More on random permutations
We might ask more detailed questions, such as:

Q4: What is the probability that π contains at least one 1-cycle (cycle of length 1)?

Q5: What is the distribution of the number of 1-cycles?

Let E_i be the event that π maps i to itself. Q4 asks for $\Pr[E_1 \lor E_2 \lor \ldots \lor E_n]$. This seems hard to compute...

What probabilities can we compute easily? Define $p_i = \Pr[E_i]$; $p_{ij} = \Pr[E_i \land E_j]$; $p_{ijk} = \Pr[E_i \land E_j \land E_k]$; and so on. (The indices i, j, k here are assumed to be distinct.) Then we have

$$p_i = \frac{(n-1)!}{n!} = \frac{1}{n}, \quad p_{ij} = \frac{(n-2)!}{n(n-1)!} = \frac{1}{n(n-1)}, \quad p_{ijk} = \frac{(n-3)!}{n!}.$$

and so on. (Check this!)

Now define $S_1 = \sum_i p_i$; $S_2 = \sum_{ij} p_{ij}$; $S_3 = \sum_{ijk} p_{ijk}$; and so on. So we get $S_1 = n \cdot \frac{1}{n} = 1$; $S_2 = \frac{n}{2(n-1)} = \frac{1}{2}$; and generally

$$S_k = \binom{n}{k} \cdot \frac{(n-k)!}{n!} = \frac{n!}{k!(n-k)!} \cdot \frac{(n-k)!}{n!} = \frac{1}{k!}.$$

The following theorem, known as the Principle of Inclusion/Exclusion, expresses $\Pr[E_1 \lor \ldots \lor E_n]$ in terms of the easier-to-compute S_k.

Theorem 1: $\Pr[E_1 \lor E_2 \lor \ldots \lor E_n] = S_1 - S_2 + S_3 - S_4 + \cdots \pm S_n$.

Proof: Let s be any sample point in $E_1 \lor \ldots \lor E_n$. How often is it counted on the right-hand-side? Suppose s occurs in exactly r of the E_i. Then it appears r times in S_1, $\binom{r}{2}$ times in S_2, $\binom{r}{3}$ times in S_3, and so on. (Why?) So the contribution of $\Pr[s]$ to the r.h.s. is

$$\Pr[s] \left\{ \binom{r}{1} - \binom{r}{2} + \binom{r}{3} - \cdots \pm \binom{r}{r} \right\}.$$ (**)

But now if we look at the binomial expansion of $(1-x)^r$ we see

$$0 = (1-1)^r = 1 - \binom{r}{1} - \binom{r}{2} + \cdots \pm \binom{r}{r},$$

so the term in braces in (***) is exactly 1. Thus s contributes exactly $\Pr[s]$ to the r.h.s., which proves the theorem. \(\square \)

Note that the theorem is true for any family of events $\{E_i\}$.

We can now answer our Q4 about random permutations. From Theorem 1, and using the values $S_k = \frac{1}{k!}$ from (**), we get:

$$\Pr[\pi \text{ contains at least one 1-cycle}] = 1 - \frac{1}{2!} + \frac{1}{3!} - \frac{1}{4!} + \cdots \pm \frac{1}{n!} \sim 1 - e^{-1} = 0.632\ldots$$

Ex: How good is this last approximation for $n = 6$? \(\square \)
Now let’s think about Q5. For a family of events \(\{E_i\} \), define

\[
q_k = \text{Pr}[\text{exactly } k \text{ of the } E_i \text{ occur}].
\]

To compute this, we first need a generalization of Theorem 1:

Theorem 1’: \(\text{Pr}[\text{at least } k \text{ of the } E_i \text{ occur}] = S_k - \binom{k}{k-1}S_{k+1} + \binom{k+1}{k-1}S_{k+2} - \binom{k+2}{k-1}S_{k+3} + \cdots \pm \binom{n-1}{k-1}S_n. \quad \Box \)

Ex: verify that Theorem 1 is a special case of Theorem 1’, and (harder!) prove Theorem 1’. \(\Box \)

From Theorem 1’, we can easily deduce:

Theorem 2: \(q_k = S_k - \binom{k+1}{k}S_{k+1} + \binom{k+2}{k}S_{k+2} - \binom{k+3}{k}S_{k+3} + \cdots \pm \binom{n}{k}S_n. \)

Proof: From the definition of \(q_k \), we have

\[
q_k = \text{Pr}[\text{at least } k \text{ of the } E_i \text{ occur}] - \text{Pr}[\text{at least } k + 1 \text{ of the } E_i \text{ occur}].
\]

From Theorem 1’, the difference of these two series (neglecting the sign) is

\[
\binom{k+i-1}{k-1} + \binom{k+i-1}{k} = \binom{k+i-1}{k-1} + \binom{k+i-1}{k} = \frac{(k+i-1)!(k+i)!}{k!(n-i-1)!} = \binom{k+i}{k}.
\]

Since the signs alternate, this gives us exactly the series claimed. \(\Box \)

Going back to the special case of random permutations, recall from (*) that \(S_k = \frac{1}{k!} \), so Theorem 2 gives us:

\[
q_0 = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots \pm \frac{1}{n!},
q_1 = 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots \pm \frac{1}{(n-1)!},
q_2 = \frac{1}{2!}\left\{ 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots \pm \frac{1}{(n-2)!} \right\},
q_3 = \frac{1}{3!}\left\{ 1 - 1 + \frac{1}{2!} - \frac{1}{3!} + \cdots \pm \frac{1}{(n-3)!} \right\},
\]

\vdots

\[
q_{n-2} = \frac{1}{(n-2)!}\left\{ 1 - 1 + \frac{1}{2!} \right\},
q_{n-1} = \frac{1}{(n-1)!}\left\{ 1 - 1 \right\} = 0,
q_n = \frac{1}{n!}.
\]

Ex: Give simple arguments to explain why \(q_{n-1} = 0 \) and \(q_n = \frac{1}{n!}. \) \(\Box \)

Thus we see that, for every fixed \(k \), \(q_k \sim \frac{1}{k!}e^{-1}. \)

The probabilities \(\left\{ \frac{1}{k!}e^{-1} \right\} \) play a special role: they define the Poisson distribution (with parameter 1).

Definition: A r.v. \(X \) has the Poisson distribution with parameter \(\lambda \) if

\[
\text{Pr}[X = k] = e^{-\lambda} \frac{\lambda^k}{k!} \quad \text{for all integers } k \geq 0
\]

(and \(\text{Pr}[X = x] = 0 \) for all other values of \(x \)). \(\Box \)

Ex: Check that this is always a probability distribution, i.e., that \(\sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} = 1. \) \(\Box \)
So we see that, as $n \to \infty$, the distribution of the number of 1-cycles in a random permutation on n elements behaves like the Poisson distribution with $\lambda = 1$.

Ex: For $n = 10$, compute the q_k exactly and compare them with the approximate values $\frac{1}{k!}e^{-1}$. How good is the approximation? □

If X is Poisson with parameter λ, then

$$E(X) = \sum_{k=0}^{\infty} e^{-\lambda} \frac{\lambda^k}{k!} \cdot k = e^{-\lambda} \lambda \sum_{k=1}^{\infty} \frac{\lambda^{k-1}}{(k-1)!} = e^{-\lambda} \lambda e^\lambda = \lambda.$$

So the expectation is just λ.

Ex: Is this result consistent with our answer to Q1 in Note 2?

Ex: What is the variance, $\text{Var}(X)$?

The Poisson distribution shows up naturally in many contexts. Here is another example, which also introduces another important distribution, the binomial distribution.

Bernoulli trials

A coin comes up heads with probability p, tails with probability $1-p$.

- Suppose it is tossed n times. What is $\Pr[\text{exactly } k \text{ heads}]$?

This question arises very frequently in applications in Computer Science. In place of coin flips, we can think of a sequence of n identical independent trials, each of which succeeds (heads) with probability p. It is also a special case of Theorem 2 above, where E_i is the event “the ith toss is heads”: the difference here is that the events E_i are now independent, so things are now much simpler.

Define the r.v. $X = \# \text{ heads in above experiment}$.

Ex: By writing $X = \sum_i X_i$ for suitable indicator r.v.’s X_i, show that $E(X) = np$ and $\text{Var}(X) = np(1-p)$. □

What does the distribution of X look like? Well, consider any outcome of the experiment in which $X = k$, i.e., in which there are exactly k heads. We can view this as a string $s \in \{H, T\}^n$ containing k H’s and $n-k$ T’s. Now since all coin tosses are independent, we must have $\Pr[s] = p^k(1-p)^{n-k}$. The number of such strings s is $\binom{n}{k}$. Summing over sample points in the event “$X = k$” gives

$$\Pr[X = k] = \binom{n}{k} p^k(1-p)^{n-k}.$$

Definition: The above distribution is known as the **binomial distribution** with parameters n and p.

Examples

1. The probability of exactly k heads in n tosses of a fair coin is $\binom{n}{k} 2^{-n}$.

2. When we toss m balls into n bins, the probability that any given bin (say, bin i) contains exactly k balls is $\binom{m}{k} \left(\frac{1}{n}\right)^k \left(1 - \frac{1}{n}\right)^{m-k}$.

We’ll have a lot more to say about the binomial distribution later. Here, we just consider a special case in which $p = \lambda/n$ for some constant λ. Note that this means that $E(X) = np = \lambda$ remains constant as $n \to \infty$.

3
Writing \(q_k = \Pr[X = k] \), we have
\[
q_0 = (1 - p)^n = (1 - \frac{\lambda}{n})^n \sim e^{-\lambda} \quad \text{as } n \to \infty.
\]
Also,
\[
\frac{q_k}{q_{k-1}} = \frac{\binom{n}{k} p^k (1-p)^{n-k}}{\binom{k-1}{k-1} p^{k-1} (1-p)^{n-k+1}} = \frac{n-k+1}{k} \cdot \frac{p}{1-p} = \frac{n-k+1}{k} \cdot \frac{\lambda}{n-\lambda}.
\]
For any fixed \(k \), we therefore have \(\frac{q_k}{q_{k-1}} \sim \frac{\lambda}{k} \) as \(n \to \infty \). So we get
\[
q_1 \sim \lambda q_0 \sim \lambda e^{-\lambda}
\]
\[
q_2 \sim \frac{\lambda}{2} q_1 \sim \frac{\lambda^2}{2!} e^{-\lambda}
\]
\[
\vdots
\]
\[
q_k \sim \frac{\lambda}{k!} q_{k-1} \sim \frac{\lambda^k}{k!} e^{-\lambda}.
\]
Once again, we get the Poisson distribution, this time with parameter \(\lambda = np \).

Example: Suppose we toss \(m = cn \) balls into \(n \) bins, where \(c \) is a constant. Then for any fixed \(k \),
\[
\Pr[\text{bin } i \text{ contains exactly } k \text{ balls}] \sim \frac{c^k}{k!} e^{-c}. \quad \square
\]