
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 6
Lecturer: Michael Jordan September 14, 2005

Notes 6 for CS 170

1 Breadth-First Search

Breadth-first search (BFS) is the variant of search that is guided by a queue, instead of the
stack that is implicitly used in DFS’s recursion. In preparation for the presentation of BFS,
let us first see what an iterative implementation of DFS looks like.

procedure i-DFS(u: vertex)

initialize empty stack S

push(u,S)

while not empty(S)

v=pop(S)

visited(v)=true

for each edge (v,w) out of v do

if not visited(w) then push(w)

algorithm dfs(G = (V,E): graph)

for each v in V do visited(v) := false

for each v in V do

if not visited(v) then i-DFS(v)

There is one stylistic difference between DFS and BFS: One does not restart BFS,
because BFS only makes sense in the context of exploring the part of the graph that is
reachable from a particular node (s in the algorithm below). Also, although BFS does
not have the wonderful and subtle properties of DFS, it does provide useful information:
Because it tries to be “fair” in its choice of the next node, it visits nodes in order of
increasing distance from s. In fact, our BFS algorithm below labels each node with the
shortest distance from s, that is, the number of edges in the shortest path from s to the
node. The algorithm is this:

Algorithm BFS(G=(V,E): graph, s: node);

initialize empty queue Q

for all v ∈ V do dist[v]=∞
insert(s,Q)

dist[s]:=0

while Q is not empty do

v:= remove(Q),

for all edges (v,w) out of v do

if dist[w] = ∞ then

insert(w,Q)

dist[w]:=dist[v]+1

For example, applied to the graph in Figure 1, this algorithm labels the nodes (by the
array dist) as shown. We would like to show that the values of dist are exactly the distances

Notes number 6 2

�������
�

������������ ������������

������������	�		�	
�

�
�������
�

���
�

������������

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
���������

�

��
��
��
��
��

��
��
��
��
��

s

��
��
��
��
��

2 3

1
2

3

2
10

Figure 1: BFS of a directed graph

of each vertex from s. While this may be intuitively clear, it is a bit complicated to prove it
formally (although it does not have to be as complicated as in CLR/CLRS). We first need
to observe the following fact.

Lemma 1

In a BFS, the order in which vertices are removed from the queue is always such that if u

is removed before v, then dist[u] ≤ dist[v].
Proof: Let us first argue that, at any given time in the algorithm, the following invariant
remains true:

if v1, . . . , vr are the vertices in the queue then dist[v1] ≤ . . . ≤ dist[vr] ≤
dist[v1] + 1.

At the first step, the condition is trivially true because there is only one element in
the queue. Let now the queue be (v1, . . . , vr) at some step, and let us see what happens
at the following step. The element v1 is removed from the queue, and its non-visited
neighbors w1, . . . , wi (possibly, i = 0) are added to queue, and the vector dist is up-
dated so that dist[w1] = dist[w2] = . . . = dist[wi] = dist[v1] + 1, while the new queue
is (v2, . . . , vr, w1, . . . , wi) and we can see that the invariant is satisfied.

Let us now prove that if u is removed from the queue in the step before v is removed
from the queue, then dist[u] ≤ dist[v]. There are two cases: either u is removed from the
queue at a time when v is immediatly after u in the queue, and then we can use the invariant
to say that dist[u] ≤ dist[v], or u was removed at a time when it was the only element in
the queue. Then, if v is removed at the following step, it must be the case that v has been
added to queue while processing u, which means dist[v] = dist[u] + 1.

The lemma now follows by observing that if u is removed before v, we can call w1, . . . , wi

the vertices removed between u and v, and see that dist[u] ≤ dist[w1] ≤ . . . ≤ dist[wi] ≤
dist[v]. 2

We are now ready to prove that the dist values are indeed the lengths of the shortest
paths from s to the other vertices.

Lemma 2

Notes number 6 3

At the end of BFS, for each vertex v reachable from s, the value dist[v] equals the length
of the shortest path from s to v.
Proof: By induction on the value of dist[v]. The only vertex for which dist is zero is s,
and zero is the correct value for s.

Suppose by inductive hypothesis that for all vertices u such that dist[u] ≤ k then dist[u]
is the true distance from s to u, and let us consider a vertex w for which dist[w] = k+1. By
the way the algorithm works, if dist[w] = k + 1 then w was first discovered from a vertex v

such that the edge (v, w) exists and such that dist[v] = k. Then, there is a path of length
k from s to v, and so there is a path of length k + 1 from s to w. It remains to prove
that this is the shortest path. Suppose by contradiction that there is a path (s, . . . , v ′, w)
of length ≤ k. Then the vertex v′ is reachable from s via a path of length ≤ k − 1, and so
dist[v′] ≤ k − 1. But this implies that v′ was removed from the queue before v (because
of Lemma 1), and when processing v′ we would have discovered w, and assigned to dist[w]
the smaller value dist[v′] + 1. We reached a contradiction, so indeed k + 1 is the length of
the shortest path from s to w, and this completes the inductive step and the proof of the
lemma. 2

Breadth-first search runs, of course, in linear time O(|V |+ |E|). The reason is the same
as with DFS: BFS visits each edge exactly once, and does a constant amount of work per
edge.

