
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 5
Lecturer: Michael Jordan September 12, 2005

Notes 5 for CS 170

1 Strongly Connected Components

Connectivity in undirected graphs is rather straightforward: A graph that is not connected
is naturally and obviously decomposed in several connected components. As we have seen,
depth-first search does this handily: Each call of explore by dfs (which we also call a
“restart” of explore) marks a new connected component.

In directed graphs, however, connectivity is more subtle. In some primitive sense, the
directed graph above is “connected” (no part of it can be “pulled apart,” so to speak,
without “breaking” any edges). But this notion does not really capture the notion of
connectedness, because there is no path from vertex 6 to 12, or from anywhere to vertex 1.
The only meaningful way to define connectivity in directed graphs is this:

Call two vertices u and v of a directed graph G = (V, E) connected if there is a path
from u to v, and one from v to u. This relation between vertices is reflexive, symmetric,
and transitive (check!), so it is an equivalence relation on the vertices. As such, it partitions
V into disjoint sets, called the strongly connected components of the graph. In the figure
below is a directed graph whose four strongly connected components are circled.

�������
�

������������ ������������

�������
�

	�		�	
�

�
 ������������

��������������������

������������ ������������ ��������

������������

������������ ������������ ��������

������ � �

!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!!�!�!

"�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�""�"�"

##
##
##
##
##

$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$$�$�$�$�$

%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%%�%�%�%�%

&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&&�&�&

'�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�''�'�'

(�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�((�(�(

)�)�))�)�))�)�))�)�))�)�))�)�))�)�))�)�))�)�))�)�)*�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�**�*�*�*

+�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�++�+�+�+

1 2 3

4

56

7 8

9

10

1 3-4

5-6-7-8-9-10

Strongly Connected Components

12 11
2-11-12

If we shrink each of these strongly connected components down to a single vertex, and
draw an edge between two of them if there is an edge from some vertex in the first to some

Notes number 5 2

vertex in the second, the resulting directed graph has to be a directed acyclic graph (dag)—
that is to say, it can have no cycles (see above). The reason is simple: A cycle containing
several strongly connected components would merge them all to a single strongly connected
component. We can restate this observation as follows:

Claim 1

Every directed graph is a dag of its strongly connected components.

This important decomposition theorem allows one to fathom the subtle connectivity
information of a directed graph in a two-level manner: At the top level we have a dag, a
rather simple structure. For example, we know that a dag is guaranteed to have at least one
source (a vertex without incoming edges) and at least one sink (a vertex without outgoing
edges), and can be topologically sorted. If we want more details, we could look inside a
vertex of the dag to see the full-fledged strongly connected component (a tightly connected
graph) that lies there.

This decomposition is extremely useful and informative; it is thus very fortunate that we
have a very efficient algorithm, based on depth-first search, that finds it in linear time! We
motivate this algorithm next. It is based on several interesting and slightly subtle properties
of depth-first search:

Lemma 2

If depth-first search of a graph is started at a vertex u, then it will get stuck and restarted
precisely when all vertices that are reachable from u have been visited. Therefore, if depth-
first search is started at a vertex of a sink strongly connected component (a strongly con-
nected component that has no edges leaving it in the dag of strongly connected compo-
nents), then it will get stuck after it visits precisely the vertices of this strongly connected
component.

For example, if depth-first search is started at vertex 5 above (a vertex in the only sink
strongly connected component in this graph), then it will visit vertices 5, 6, 7, 8, 9, and 10—
the six vertices form this sink strongly connected component—and then get stuck. Lemma 2
suggests a way of starting the sought decomposition algorithm, by finding our first strongly
connected component: Start from any vertex in a sink strongly connected component, and,
when stuck, output the vertices that have been visited: They form a strongly connected
component!

Of course, this leaves us with two problems: (A) How to guess a vertex in a sink
strongly connected component, and (B) how to continue our algorithm after outputting
the first strongly connected component, by continuing with the second strongly connected
component, etc.

Let us first face Problem (A). It is hard to solve it directly. There is no easy, direct way
to obtain a vertex in a sink strongly connected component. But there is a fairly easy way
to obtain a vertex in a source strongly connected component. In particular:

Lemma 3

The vertex with the highest post number in depth-first search (that is, the vertex where
the depth-first search ends) belongs to a source strongly connected component.

Lemma 3 follows from a more basic fact.

Notes number 5 3

Lemma 4

Let C and C ′ be two strongly connected components of a graph, and suppose that there is
an edge from a vertex of C to a vertex of C ′. Then the vertex of C visited first by depth-first
search has higher post than any vertex of C ′.
Proof: There are two cases: Either C is visited before C ′ by depth-first search, or the
other way around. In the first case, depth-first search, started at C, visits all vertices of
C and C ′ before getting stuck, and thus the vertex of C visited first was the last among
the vertices of C and C ′ to finish. If C ′ was visited before C by depth-first search, then
depth-first search from it was stuck before visiting any vertex of C (the vertices of C are
not reachable from C ′), and thus again the property is true. 2

Lemma 4 can be rephrased in the following suggestive way: Arranging the strongly
connected components of a directed graph in decreasing order of the highest post number
topologically sorts the strongly connected components of the graph! This is a generalization
of our topological sorting algorithm for dags: After all, a dag is just a directed graph with
singleton strongly connected components.

Lemma 3 provides an indirect solution to Problem (A): Consider the reverse graph of
G = (V, E), GR = (V, ER)—G with the directions of all edges reversed. GR has precisely
the same strongly connected components as G (why?). So, if we make a depth-first search
in GR, then the vertex where we end (the one with the highest post number) belongs to
a source strongly connected component of GR—that is to say, a sink strongly connected
component of G. We have solved Problem (A)!

Onwards to Problem (B): How to continue after the first sink component is output?
The solution is also provided by Lemma 4: After we output the first strongly connected
componentand delete it from the graph, the vertex with the highest post from the depth-first
search of GR among the remaining vertices belongs to a sink strongly connected component
of the remaining graph. Therefore, we can use the same depth-first search information
from GR to output the second strongly connected component, the third strongly connected
component, and so on. The full algorithm is this:

1. Perform DFS on GR.

2. Run DFS, labeling connected components, processing the vertices of G in order of
decreasing post found in step 1.

Needless to say, this algorithm is as linear-time as depth-first search, only the constant of
the linear term is about twice that of straight depth-first search. (Question: How does one
construct GR—that is, the adjacency lists of the reverse graph—from G in linear time? And
how does one order the vertices of G in decreasing post[v] also in linear time?) If we run
this algorithm on the directed graph above, Step 1 yields the following order on the vertices
(decreasing post-order in GR’s depth-first search—watch the three “negatives” here): 5, 6,
10, 7, 9, 8, 3, 4, 2, 11, 12, 1, (assuming the are visited taking the lowest numbered vertex
first). Step 2 now discovers the following strongly connected components: component 1: 5,
6, 10, 7, 9, 8; component 2: 3, 4; component 3: 2, 11, 12; and component 4: 1.

Incidentally, there is more sophisticated connectivity information that one can derive
from undirected graphs. An articulation point is a vertex whose deletion increases the num-
ber of connected components in the undirected graph (in the graph below there are four

Notes number 5 4

articulation points: 3, 6, and 8. Articulation points divide the graph into biconnected com-
ponents (the pieces of the graph between articulation points); this is not quite a partition,
because neighboring biconnected components share an articulation point. For example, the
graph below has four biconnected components: 1-2-3-4-5-7-8, 3-6, 6-9-10, and 8-11. Intu-
itively, biconnected components are the parts of the graph such that any two vertices have
not just one path between them but two vertex-disjoint paths (unless the biconnected com-
ponent happens to be a single edge). Just like any directed graph is a dag of its strongly
connected components, any undirected graph can be considered a tree of its biconnected
components. Not coincidentally, this more sophisticated and subtle connectivity informa-
tion can also be captured by a slightly more sophisticated version of depth-first search.

� ��

� ��

� �� � � �� �

� �	 	

� � �

� ��� ��

� ��

� �� �

4

1 2

3 5

6 7 8

9 10 11

