UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 3
Lecturer: Michael Jordan September 7, 2005

Notes 3 for CS 170

1 Introduction to Graphs

Sections 5.3 and 5.4 of CLR (Appendix B.4 and B.5 of CLRS), which you should read,
introduce a lot of standard notation for talking about graphs and trees. For example, a
graph G = G(V, E) is defined by the finite set V' of vertices and the finite set E of edges
(u,v) (which connect pairs of vertices u and v). The edges may be directed or undirected
(depending on whether the edge points from one vertex to the other or not). We will
draw graphs with the vertices as dots and the edges as arcs connecting them (with arrows
if the graph is directed). We will use terms like adjacency, neighbors, paths (directed or
undirected), cycles, etc. to mean the obvious things. We will define other notation as we
introduce it.

Graphs are useful for modeling a diverse number of situations. For example, the vertices
of a graph might represent cities, and edges might represent highways that connect them.
In this case, each edge might also have an associated length. Alternatively, an edge might
represent a flight from one city to another, and each edge might have a weight which
represents the cost of the flight. The typical problem in this context is computing shortest
paths: given that you wish to travel from city X to city Y, what is the shortest path (or the
cheapest flight schedule). There are very efficient algorithms for solving these problems. A
different kind of problem—the traveling salesman problem—is very hard to solve. Suppose
a traveling salesman wishes to visit each city exactly once and return to his starting point,
in which order should he visit the cities to minimize the total distance traveled? This is an
example of an NP-complete problem, and one we will study later in this course.

A different context in which graphs play a critical modeling role is in networks of pipes or
communication links. These can, in general, be modeled by directed graphs with capacities
on the edges. A directed edge from u to v with capacity ¢ might represent a pipeline that
can carry a flow of at most ¢ units of oil per unit time from u to v. A typical problem in
this context is the max-flow problem: given a network of pipes modeled by a directed graph
with capacities on the edges, and two special vertices—a source s and a sink t—what is
the maximum rate at which oil can be transported from s to t over this network of pipes?
There are ingenious techniques for solving these types of flow problems, and we shall see
some of them later in this course.

In all the cases mentioned above, the vertices and edges of the graph represented some-
thing quite concrete such as cities and highways. Often, graphs will be used to represent
more abstract relationships. For example, the vertices of a graph might represent tasks,
and the edges might represent precedence constraints: a directed edge from v to v says that
task u must be completed before v can be started. An important problem in this context
is scheduling: in what order should the tasks be scheduled so that all the precedence con-
straints are satisfied. There is a very fast algorithm for solving this problem that we will
see shortly.

Notes number 3 2

We usually denote the number of nodes of a graph by |V| = n, and its number of edges
by |E| = e. e is always less than or equal to n?, since this is the number of all ordered
pairs of n nodes—for undirected graphs, this upper bound is @ On the other hand,
it is reasonable to assume that e is not much smaller than n; for example, if the graph has
no isolated nodes, that is, if each node has at least one edge into or out of it, then e > 7.
Hence, e ranges roughly between n and n?. Graphs that have about n? edges—that is,
nearly as many as they could possibly have—are called dense. Graphs with far fewer than
n? edges are called sparse. Planar graphs (graphs that can be drawn on a sheet of paper

without crossings of edges) are always sparse, having O(n) edges.

2 Reasoning about Graphs

We will do a few problems to show how to reason about graphs.

Handshaking Lemma: Let G = (V, E) be an undirected graph. Let degree(v) be the
degree of vertex v, i.e., the number of edges incident on v. Then } .y degree(v) = 2e.

Proof: Let E, be the list of edges adjacent to vertex v, so degree(v) = |F,|. Then
> vey degree(v) = > oy |Ey|. Since every edge (u,v) appears in both E, and E,, each
edge is counted exactly twice in), <y |Ey|, which must then equal 2e.

A free tree is a connected, acyclic undirected graph. A rooted tree is a free tree where
one vertex is identified as the root.

Corollary: In a tree (free or rooted), e =n — 1.

Proof: If the tree is free, pick any vertex to be the root, so we can identify the parent
and children of any vertex. Every vertex in the tree except the root is a child of another
vertex, and is connected by an edge to its parent. Thus e is the number of children in the
tree, or n — 1, since all vertices except the root are children.

In fact one can show that if G = (V, E)) is undirected, then it is a free tree if and only
if it is connected (or acyclic) and e = n — 1 (see Theorem 5.2 in CLR).

3 Data Structures for Graphs

One common representation for a graph G(V, E) is the adjacency matriz. Suppose V =
{1,---,n}. The adjacency matrix for G(V,E) is an n x n matrix A, where a;; = 1 if
(1,7) € E and a; j = 0 otherwise. The advantage of the adjacency matrix representation is
that it takes constant time (just one memory access) to determine whether or not there is
an edge between any two given vertices. In the case that each edge has an associated length
or a weight, the adjacency matrix representation can be appropriately modified so entry
a; ; contains that length or weight instead of just a 1. The most important disadvantage of
the adjacency matrix representation is that it requires n? storage, even if the graph is very
sparse, having as few as O(n) edges. Moreover, just examining all the entries of the matrix
would require n? steps, thus precluding the possibility of algorithms for sparse graphs that
run in linear (O(e)) time.

The adjacency list representation avoids these disadvantages. The adjacency list for a
vertex i is just a list of all the vertices adjacent to ¢ (in any order). In the adjacency list
representation, we have an array of size n to represent the vertices of the graph, and the i

Notes number 3 3

element of the array points to the adjacency list of the i** vertex. The total storage used
by an adjacency list representation of a graph with n vertices and e edges is O(n + ¢e). We
will use this representation for all our graph algorithms that take linear or near linear time.
Using the adjacency lists representation, it is easy to iterate through all edges going out of
a particular vertex v—and this is a very useful kind of iteration in graph algorithms (see
for example the depth-first search procedure in a later section); with an adjacency matrix,
this would take n steps, even if there were only a few edges going out of v. One potential
disadvantage of adjacency lists is that determining whether there is an edge from vertex 4
to vertex j may take as many as n steps, since there is no systematic shortcut to scanning
the adjacency list of vertex i.

So far we have discussed how to represent directed graphs on the computer. To represent
undirected graphs, just remember that an undirected graph is just a special case of directed
graph: one that is symmetric and has no loops. The adjacency matrix of an undirected
graph has the additional property that a;; = aj; for all vertices ¢ and j. This means the
adjacency matrix is symmetric.

What data structure(s) would you use if you wanted the advantages of both adjacency
lists and adjacency matrices? That is, you wanted to loop though all £ = degree(v) edges
adjacent to v in O(k) time, determine if edge (u,v) exists in O(1) time on the average for
any pair of vertices u and v, and use O(n + e) total storage?

4 Graph Colorings

A legal coloring of an undirected graph G(V, E) is an assignment from a set of colors to the
set of nodes such that for any edge e = (u,v) € E the color of u is different than v. The
size of the coloring is the size of the set of colors. The chromatic number of a graph, x(G),
is the smallest size of any legal coloring of G.

Exercises:

1. Show that a tree is two colorable.

2. Recall (from Math 55 or CS 70) that the complete graph on n nodes, K, is the graph
G = (V,E) where |V| =n and E =V x V. That is all nodes a joined by an edge in
K,,. Show that K, requires n colors to be colored.

