
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 20
Lecturer: Michael Jordan December 5, 2005

Notes 20 for CS 170

Approximating NP-Complete Problems

What does it mean to approximate the solution of an NP-complete problem, when we
have so far been considering only questions with yes/no answers? Actually, many of the
problems we have looked at are most naturally stated as optimization problems, which we can
approximate. For example, in TSP the yes/no question is whether there is a cycle visiting
each node once of length at most K; the optimization problem is to find the shortest cycle;
and the approximation problem is to find a short cycle, i.e., one whose length is as short
as one can afford to compute. Similarly, for Vertex Cover the yes/no question is whether
there is subset of vertices touching each edge, of cardinality at most k; the optimization
problem is to find the vertex cover with the fewest vertices; and the approximation problem
is to find a vertex cover with few vertices, i.e., one whose cardinality is as small as one can
afford to compute.

To measure how good an approximation we compute, we need a measure of error.
Suppose c > 0 is an approximation to the exact value c∗ > 0. (For Vertex Cover, c is
the size of a vertex cover found by an approximate algorithm, and c∗ is the true minimum
vertex cover size.) Then the ratio bound (or performance ratio or approximation ratio) of c
is ρ where

max

{

c

c∗
,
c∗

c

}

≤ ρ .

Note that ρ ≥ 1, and ρ = 1 exactly when c = c∗. If the size of the problem whose answer
is c∗ is n, we may also write ρ(n) to indicate that the error may depend on n.

For example, ρ(n) = 2, means that the computed result c never differs from c∗ by more
than a factor of 2.

We will characterize our approximation algorithms by the value of ρ that they guarantee.
It turns out that some NP-complete problems let us compute approximations for small ρ in
polynomial time, but for other NP-complete problems computing any approximation with
bounded ρ is still NP-complete.

0.1 Approximating Vertex Cover

Recall that a vertex cover C is a subset C ⊂ V of the set of vertices of a graph G = (V, E)
with the property that every edge in E has a vertex in C as an end point. The vertex cover
optimization problem is to find the vertex cover of smallest cardinality c∗. It turns out that
the following simple greedy algorithm never finds a cover more than twice too large, i.e.,
c ≤ 2c∗, or ρ = 2.

C = ∅ // initialize an empty vertex cover
for all (u, v) ∈ E

if u 6∈ C and v 6∈ C then C := C ∪ {u, v}
return C

Notes number 20 2

The set C can be represented using a Boolean vector of size |V |, so that checking
membership in C can be done in constant time. The running time is obviously O(|E|+ |V |),
since we use O(|V |) time to initialize the representation of C and then we do a constant
amount of work for every edge.

Theorem 1

The above algorithm satisfies ρ ≤ 2, i.e., if C is the cover computed by the algorithm and

C∗ is an optimal cover, then |C| ≤ 2|C∗|.

Proof: First of all, it should be clear that the algorithm returns a vertex cover. Every
time an edge is found that is not covered by the current set C, then both endpoints are
added to C, thus guaranteeing that the edge is covered.

For the approximation, let M be the set of edges (u, v) such that when (u, v) is considered
in the for loop, the vertices u, v are added to C. By construction, |C| = 2|M |. Furthermore,
M is a matching, and so each edge of M must be covered by a distinct vertex; even if C∗

is an optimum cover, we must have |C∗| ≥ |M |, and so |C| ≤ 2|C∗|. 2

Let us now consider another way of achieving an approximation within a factor of 2.
Given a graph G = (V, E), write a linear program having a variable xv for each vertex v,
and structured as follows:

min
∑

v xv

s.t.

xu + xv ≥ 1 (for each (u, v) ∈ E)

xv ≥ 0 (for each v ∈ V)

Now, let C be a vertex cover, and consider the solution defined by setting xv = 0 if
v 6∈ C, and xv = 1 if v ∈ C. Then the solution is feasible, because all values are ≥ 0, and
each (u, v) is covered by C, so that xu + xv is equal to either one or two (and so is at least
one). Furthermore, the cost of the solution is equal to the cardinality of C. This implies
that the cost of the optimum of the linear program is at most the cost of an optimum
solution for the vertex cover problem.

Let’s now solve optimally the linear program, and get the optimal values x∗

v. By the
above reasoning,

∑

x x∗

v ≤ c∗. Let us then define a vertex cover C, as follows: a vertex v
belongs to C if and only if x∗

v ≥ 1/2. We observe that:

• C is a valid vertex cover, because for each edge (u, v) we have x∗

u +x∗

v ≥ 1, so at least
one of x∗

u or x∗

v must be at least 1/2, and so at least one of u or v belongs to C.

•
∑

v x∗

v ≥ |C|/2, because every vertex in C contributes at least 1/2 to the sum, and
the vertices not in C contribute at least 0. Equivalently, |C| ≤

∑

v x∗

v ≤ 2c∗ where c∗

is the cardinality of an optimum vertex cover.

So, again, we have a 2-approximate algorithm.
No algorithm achieving an approximation better than 2 is known. If P6=NP, then there

is no polynomial time algorithm that achieves an approximation better than 7/6 (proved
by H̊astad in 1997).

Notes number 20 3

The greedy algorithm might have been independently discovered by several people and
was never published. It appears to have been first mentioned in a 1974 manuscript. The
linear programming method is from the late 1970s and it also applies to the weighted version
of the problem, where every vertex has a positive weight and we want to find the vertex
cover of minimum total weight.

The LP-based algorithm was one of the first applications of the following general method-
ology: formulate a linear program that “includes” all solutions to an NP-complete problem,
plus fractional solutions; solve the linear program optimally; “round” the, possibly frac-
tional, optimum LP solution into a solution for the NP-complete problem; argue that the
rounding process creates a solution whose cost is not too far away from the cost of the
LP optimum, and thus not too far away from the cost of the optimum solution of the NP-
complete problem. The same methodology has been applied to several other problems, with
considerable success.

0.2 Approximating TSP

In the Travelling Salesman Problem (TSP), the input is an undirected graph G = (V, E)
and weights, or distances, d(u, v) for each edge (u, v). (Often, the definition of the problem
requires the graph to be complete, i.e., E to contain all possible edges.) We want to find
an order in which to visit all vertices exactly once, so that the total distance that we have
to travel is as small as possible. The vertices of the graph are also called “cities.” The idea
is that there is a salesman that has to go through a set of cities, he knows the distances
between cities, and he wants to visit every city and travel the smallest total distance. This
problem turns out to be extremely hard to approximate in this general formulation, mostly
because the formulation is too general.

A more interesting formulation requires the graph to be complete and the distances
to satisfy the “triangle inequality” that says that for every three cities u, v, w we have
d(u, w) ≤ d(u, v) + d(v, w). This version of the problem is called “metric” TSP, or ∆TSP,
where the letter ∆ represents the “triangle” inequality.1

Consider the following algorithm for metric TSP: find a minimum spanning tree T in
G, then define a cycle that starts at the root of the tree, and then moves along the tree in
the order in which a DFS would visit the tree. In this way, we start and end at the root,
we visit each vertex at least once (possibly, several times) and we pass through each edge
of the minimum spanning tree exactly twice, so that the total length of our (non-simple)
cycle is 2 · cost(T).

What about the fact that we are passing through some vertices multiple times? We
can straighten our tour in the following way: suppose a section of the tour is u → v → w,
and v is a vertex visited by the tour some other time. Then we can change that section to
u → w, and by the triangle inequality we have only improved the tour. This action reduced
the number of repetitions of vertices, so eventually we get a tour with no repetitions, and
whose cost is only smaller than 2 · cost(T).

1The metric TSP is equivalent to the problem where we are given a graph G = (V, E), not necessarily
complete, and weights, or distances, d(u, v) for each edge (u, v), and we want to find an order in which
to visit each vertex at least once, so that the total distance that we have to travel is as small as possible.
(Notice that we may come back to the same vertex more than once.) You could try to prove the equivalence
as an exercise.

Notes number 20 4

Finally, take an optimal tour C, and remove an edge from it. Then what we get is a
spanning tree, whose cost must be at least cost(T). Therefore, the cost the optimal tour is
at least the cost of the minimum spanning tree; our algorithm finds a tour of cost at most
twice the cost of the minimum spanning tree and so the solution is 2-approximate.

This algorithm has never been published and is of uncertain attribution. An algorithm
achieving a 3/2-approximation was published in 1976, based on similar principles. There has
been no improvement since then, but there are reasons to believe that a 4/3-approximation
is possible.

In 2000 it has been shown that, if P6=NP, then there is no polynomial time algorithm
achieving an approximation of about 1.01 for metric TSP.

If points are in the plane, and the distance is the standard geometric distance, then any
approximation ratio bigger than one can be achieved in polynomial time (the algorithm is
by Arora, 1996). This remains true even in geometries with more than two dimensions, but
not if the number of dimensions grows at least logarithmically with the number of cities.

0.3 Approximating Max Clique

H̊astad proved in 1996 that there can be no algorithm for Max Clique achieving an approx-
imation ratio ρ(n) = n.99, unless NP has polynomial time probabilistic algorithms (which
is almost but not quite the same as P=NP). In fact, any constant smaller than one can be
replaced in the exponent, and the result is still true.

Notice that the algorithm that returns a single vertex is an n-approximation: a vertex
is certainly a clique of size 1, and no clique can be bigger than n.

We will see a (n/ log n)-approximation. In light of H̊astad’s result we cannot hope for
much more.2

Given a graph G = (V, E), the algorithm divides the set of vertices in k = n/logn blocks
B1, . . . , Bk, each block containing log n vertices. (It’s not important how the blocks are
chosen, as long as they all have size log n.) Then, for each block Bi, the algorithm finds
the largest subset Ki ⊆ Bi that is a clique in G. This can be done in time O(n(log n)2)
time, because there are n possible subset, and checking that a set is a clique can be done
in quadratic time (in the size of the set). Finally, the algorithm returns the largest of the
cliques found in this way.

Let K∗ be the largest clique in the graph. Clearly, there must be one block Bi that
contains at least |K∗|/k vertices of K∗, and when the algorithm considers Bi it will find a
clique with at least |K∗|/k vertices. Possibly, the algorithm might find a bigger clique in
other blocks. In any case, the size of the clique given in output by the algorithm is at least
1/k = log n/n times the size of K∗.

2There is reason to believe that the right result is that a n/2
√

log n-approximation is possible in polynomial
time, but not better. So far, the best known approximation algorithm has roughly ρ(n) = n/(log n)2, while a

result by Khot shows that, under strong assumption, ρ(n) = n/2(log n)1−o(1)

is not achievable in polynomial
time.

