
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 17
Lecturer: Michael Jordan November 4, 2005

Notes 17 for CS 170

1 Linear Programming

It turns out that a great many problems can be formulated as linear programs, i.e., max-
imizing (or minimizing) a linear function of some variables, subject to constraints on the
variables; these constraints are either linear equations or linear inequalities, i.e., linear func-
tions of the variables either set equal to a constant, or ≤ a constant, or ≥ a constant. Most of
this lecture will concentrate on recognizing how to reformulate (or reduce) a given problem
to a linear program, even though it is not originally given this way. The advantage of this
is that there are several good algorithms for solving linear programs that are available. We
will only say a few words about these algorithms, and instead concentrate on formulating
problems as linear programs.

2 Introductory example in 2D

Suppose that a company produces two products, and wishes to decide the level of production
of each product so as to maximize profits. Let x1 be the amount of Product 1 produced
in a month, and x2 that of Product 2. Each unit of Product 1 brings to the company a
profit of 120, and each unit of Product 2 a profit of 500. At this point it seems that the
company should only produce Product 2, but there are some constraints on x1 and x2 that
the company must satisfy (besides the obvious one, x1, x2 ≥ 0). First, x1 cannot be more
than 200, and x2 more than 300—because of raw material limitations, say. Also, the sum
of x1 and x2 must be at most 400, because of labor constraints. What are the best levels
of production to maximize profits?

We represent the situation by a linear program, as follows (where we have numbered the
constraints for later reference):

max 120x1 + 500x2

(1) x1 ≤ 200

(2) x2 ≤ 300

(3) x1 + x2 ≤ 400

(4) x1 ≥ 0

(5) x2 ≥ 0

The set of all feasible solutions of this linear program (that is, all vectors (x1, x2) in 2D
space that satisfy all constraints) is precisely the (black) polygon shown in Figure 1 below,
with vertices numbered 1 through 5.

The vertices are given in the following table, and labelled in Figure 1 (we explain the
meaning of “active constraint” below):



Notes number 17 2

0 50 100 150 200 250 300 350 400
0

50

100

150

200

250

300

350

400

x1

x2

1 2

3 4

5

Figure 1: The feasible region (polygon), solution vertex (#4), and line of constant profit

Vertex x1-coord x2-coord Active constraints

1 0 0 4,5
2 200 0 1,5
3 0 300 2,4
4 100 300 2,3
5 200 200 1,3

The reason all these constraints yield the polygon shown is as follows. Recall that a linear
equation like ax1 + bx2 = p defines a line in the plane. The inequality ax1 + bx2 ≤ p defines
all points on one side of that line, i.e., a half-plane, which you can think of as an (infinite)
polygon with just one side. If we have two such constraints, the points have to lie in the
intersection of two half-planes, i.e., a polygon with 2 sides. Each constraint adds (at most)
one more side to the polygon. For example, the 5 constraints above yield 5 sides in the
polyhedron: constraint (1), x2 ≤ 200, yields the side with vertices #2 and #5, constraint
(2), x3 ≤ 300, yields the side with vertices #3 and #4, constraint (3), x1 +x2 ≤ 400, yields
the side with vertices #4 and #5, constraint (4), x1 ≥ 0, yields the side with vertices #1
and #3, and constraint (5), x2 ≥ 0, yields the side with vertices #1 and #2. We also say
that constraint (1) is active at vertices #2 and #5 since it is just barely satisfied at those
vertices (at other vertices x2 is strictly less than 200).

We wish to maximize the linear function profit=120x1 + 500x2 over all points of this
polygon. We think of this geometrically as follows. The set of all points satisfying p =
120x1 + 500x2 for a fixed p is a line. As we vary p, we get different lines, all parallel to one
another, and all perpendicular to the vector (120, 500). (We review this basic geometrical
fact below).



Notes number 17 3

Geometrically, we want to increase p so that the line is just barely touching the polygon
at one point, and increasing p would make the plane miss the polygon entirely. It should
be clear geometrically that this point will usually be a vertex of the polygon. This point
is the optimal solution of the linear program. This is shown in the figure above, where the
green line (going from the origin to the top of the graph) is parallel to the vector (120, 500),
the red line (going all the way from left to right across the graph) is perpendicular to
the green line and connects to the solution vertex #4 (100, 300), which occurs for p =
120 ∗ 100 + 500 ∗ 300 = 162000 in profit. (The blue “L” connecting the green and red lines
indicates that they are perpendicular.)

(Now we review why the equation y1 ·x1 + y2 ·x2 = p defines a line perpendicular to the
vector y = (y1, y2). You may skip this if this is familiar material. Write the equation as a
dot product of y and x = (x1, x2): y ∗ x = p. First consider the case p = 0, so y ∗ x = 0.
Recall that the if the dot product of two vectors is 0, then the vectors are perpendicular.
So when p = 0, y ∗ x = 0 defines the set of all vectors (points) x perpendicular to y, which
is a line through the origin. When p 6= 0, we argue as follows. Note that y ∗ y = y2

1 + y2
2.

Then define the vector ȳ = (p/(y ∗ y))y, a multiple of y. Then we can easily confirm
that ȳ satisfies the equation because y ∗ ȳ = (p/(y ∗ y))(y ∗ y) = p. Now think of every
point x as the sum of two vectors x = x̄ + ȳ. Substituting in the equation for x we get
p = y ∗ x = y ∗ (x̄ + ȳ) = y ∗ x̄ + y ∗ ȳ = y ∗ x̄ + p, or y ∗ x̄ = 0. In other words, the points
x̄ lie in a plane through the origin perpendicular to y, and the points x = x̄ + ȳ are gotten
just by adding the vector ȳ to each vector in this plane. This just shifts the plane in the
direction ȳ, but leaves it perpendicular to y.)

There are three other geometric possibilities that could occur:

• If the planes for each p are parallel to an edge or face touching the solution vertex,
then all points in that edge or face will also be solutions. This just means that the
solution is not unique, but we can still solve the linear program. This would occur in
the above example if we changed the profits from (120, 500) to (100, 100); we would get
equally large profits of p = 40000 either at vertex #5 (200, 200), vertex #4 (100, 300),
or anywhere on the edge between them.

• It may be that the polygon is infinite, and that p can be made arbitrarily large.
For example, removing the constraints x1 + x2 ≤ 400 and x1 ≤ 200 means that x1

could become arbitrarily large. Thus (x1, 0) is in the polygon for all x1 > 0, yielding
an arbitrarily large profit 120x1. If this happens, it probably means you forgot a
constraint and so formulated your linear program incorrectly.

• It may be that the polygon is empty, which is also called infeasible. This means that
no points (x1, x2) satisfy the constraints. This would be the case if we added the
constraint, say, that x1 + 2x2 ≥ 800; since the largest value of x1 + 2x2 occurs at
vertex #4, with x1 + 2x2 = 100 + 2 ∗ 300 = 700, this extra constraint cannot be
satisfied. When this happens it means that your problem is overconstrained, and you
have to weaken or eliminate one or more constraints.



Notes number 17 4

3 Introductory Example in 3D

Now we take the same company as in the last section, add Product 3 to its product line,
along with some constraints, and ask how the problem changes. Each unit of Product 3
brings a profit of 200, and the sum of x2 and three times x3 must be at most 600, because
Products 2 and 3 share the same piece of equipment (x2 + 3x3 ≤ 600).

This changes the linear program to

max 120x1 + 500x2 + 200x3

(1) x1 ≤ 200

(2) x2 ≤ 300

(3) x1 + x2 ≤ 400

(4) x1 ≥ 0

(5) x2 ≥ 0

(6) x3 ≥ 0

(7) x2 + 3x3 ≤ 600

Each constraint correspond to being on one side of a plane in (x1, x2, x3) space, a half-

space. The 7 constraints result in a 7-sided polyhedron shown in Figure 2. The polyhedron
has vertices and active constraints show here:

Vertex x1-coord x2-coord x3-coord Active constraints

1 0 0 0 4,5,6
2 200 0 0 1,5,6
3 0 300 0 2,4,6
4 100 300 0 2,3,6
5 200 200 0 1,3,6
6 0 0 200 4,5,7
7 100 300 100 2,3,7
8 200 0 200 1,5,7

Note that a vertex now has 3 active constraints, because it takes the intersection of at
least 3 planes to make a corner in 3D, whereas it only took the intersection of 2 lines to
make a corner in 2D.

Again the (green) line is in the direction (120,500,200) of increasing profit, the maximum
of which occurs at vertex #7. There is a (red) line connecting vertex #7 to the green line,
to which it is perpendicular.

In general m constraints on n variables can yield an m-sided polyhedron in n-dimensional

space. Such a polyhedron can be seen to have as many as

(

m
n

)

vertices, since n constraints

are active at a corner, and there are

(

m
n

)

ways to choose n constraints. Each of these

very many vertices is a candidate solution. So when m and n are large, we must rely on a
systematic algorithm rather than geometric intuition in order to find the solution.



Notes number 17 5

0

100

200

300

400

0

100

200

300

400
0

50

100

150

200

250

300

350

400

x1

8

2

5

6

1

7

4

x2

3

x3

Figure 2: The feasible region (polyhedron).

4 Algorithms for Linear Programming

Linear programming was first solved by the simplex method devised by George Dantzig in
1947.

Consider the following linear program:

max 120x1 + 500x2 + 200x3

(1) x1 ≤ 200

(2) x2 ≤ 300

(3) x1 + x2 ≤ 400

(4) x1 ≥ 0

(5) x2 ≥ 0

(6) x3 ≥ 0

(7) x2 + 3x3 ≤ 600

where the polyhedron of feasible solutions is shown in Figure 3 and its set of vertices is



Notes number 17 6

0

100

200

300

400

0

100

200

300

400
0

50

100

150

200

250

300

350

400

x1

8

2

5

6

1

7

4

x2

3

x3

Figure 3: The feasible region (polyhedron).

Vertex x1-coord x2-coord x3-coord Active constraints

1 0 0 0 4,5,6
2 200 0 0 1,5,6
3 0 300 0 2,4,6
4 100 300 0 2,3,6
5 200 200 0 1,3,6
6 0 0 200 4,5,7
7 100 300 100 2,3,7
8 200 0 200 1,5,7

The simplex method starts from a vertex (in this case the vertex (0, 0, 0)) and repeatedly
looks for a vertex that is adjacent, and has better objective value. That is, it is a kind of
hill-climbing in the vertices of the polytope. When a vertex is found that has no better
neighbor, simplex stops and declares this vertex to be the optimum. For example, in
Figure 2, if we start at vertex #1 (0, 0, 0), then the adjacent vertices are #2, #3, and
#4 with profits 24000, 150000 and 40000, respectively. If the algorithm chooses to go to
#3, it then examines vertices #6 and #7, and discovers the optimum #7. There are now
implementations of simplex that solve routinely linear programs with many thousands of
variables and constraints.

The simplex algorithm will also discover and report the other two possibilities: that
the solution is infinite, or that the polyhedron is empty. In the worst case, the simplex
algorithm takes exponential time in n, but this is very rare, so simplex is widely used in
practice. There are other algorithms (by Khachian in 1979 and Karmarkar in 1984) that



Notes number 17 7

are guaranteed to run in polynomial time, and are sometimes faster in practice.

5 Different Ways to Formulate a Linear Programming Prob-

lem

There are a number of equivalent ways to write down the constraints in a linear programming
problem. Some formulations of the simplex method use one and some use another, so it is
important to see how to transform among them.

One standard formulation of the simplex method is with a matrix A of constraint coeffi-
cients, a vector b of constraints, and a vector f defining the linear function f ∗x =

∑

i
fi ·xi

(the dot product of f and x) to be maximized. The constraints are written as the single
inequality A · x ≤ b, which means that every component (A · x)i of the vector A · x is less
than or equal to the corresponding component bi: (A · x)i ≤ bi. Thus, A has as many rows
as there are constraints, and as many columns as there are variables.

In the example above, f = [120, 500, 200],

A =

1 0 0
0 1 0
1 1 0
−1 0 0
0 −1 0
0 0 −1
0 1 3

and b =

200
300
400
0
0
0

600

Note that the constraints 4, 5 and 6 are −x1 ≤ 0, −x2 ≤ 0 and −x3 ≤ 0, or x1 ≥ 0, x2 ≥ 0
and x3 ≥ 0, respectively. In other words, constraints with ≥ can be changed into ≤ just by
multiplying by −1.

Note that by changing f to −f , and maximizing −f ∗ x, we are actually minimizing

f ∗ x. So linear programming handles both maximization and minimization equally easily.
Matlab 5.3, which is available on UNIX machines across campus, has a function linprog(−f, A, b)

for solving linear programs in this format. (This implementation minimizes the linear func-
tion instead of maximizing it, but since minimizing −f ∗x is the same as maximizing f ∗x,
we only have to negate the f input argument to get Matlab to maximize f ∗ x). In earlier
Matlab versions this program is called LP.

Now suppose that in addition to inequalities, we have equalities, such as x1 + x3 = 10.
How do we express this in terms of inequalities? This is simple: write each equality as two

inequalities: x1 + x3 ≤ 10 and x1 + x3 ≥ 10 (or −x1 − x2 ≤ −10).
Similarly, one can turn any linear program into one just with equalities, and all inequal-

ities of the form xi ≥ 0; some versions of simplex require this form. To turn an inequality
like x1 + x2 ≤ 400 into an equation, we introduce a new variable s (the slack variable for
this inequality), and rewrite this inequality as x1 + x2 + s = 400, s ≥ 0. Similarly, any
inequality like x1 + x3 ≥ 20 is rewritten as x1 + x3 − s = 20, s ≥ 0; s is now called a surplus

variable.
We handle an unrestricted variable x as follows: We introduce two nonnegative variables,

x+ and x−, and replace x by x+ − x−. This way, x can take on any value.



Notes number 17 8

6 A Production Scheduling Example

We have the demand estimates for our product for all months of 1997, di : i = 1, . . . , 12,
and they are very uneven, ranging from 440 to 920. We currently have 60 employees, each
of which produce 20 units of the product each month at a salary of 2,000; we have no stock
of the product. How can we handle such fluctuations in demand? Three ways:

• overtime—but this is expensive since it costs 80% more than regular production, and
has limitations, as workers can only work 30% overtime.

• hire and fire workers—but hiring costs 320, and firing costs 400.

• store the surplus production—but this costs 8 per item per month

This rather involved problem can be formulated and solved as a linear program. As in
all such reductions, a crucial first step is defining the variables:

• Let wi be the number of workers we have in the ith month—we start with w0 = 60.

• Let xi be the production for month i.

• oi is the number of items produced by overtime in month i.

• hi and fi are the numbers of workers hired/fired in the beginning of month i.

• si is the amount of product stored after the end of month i.

We now must write the constraints:

• xi = 20wi +oi—the amount produced is the one produced by regular production, plus
overtime.

• wi = wi−1 + hi − fi, wi ≥ 0—the changing number of workers.

• si = si−1 +xi−di ≥ 0—the amount stored in the end of this month is what we started
with, plus the production, minus the demand.

• oi ≤ 6wi—only 30% overtime.

Finally, what is the objective function? It is

min 2000
∑

wi + 400
∑

fi + 320
∑

hi + 8
∑

si + 180
∑

oi.



Notes number 17 9

A

10

6

11

13

8 12

B

C

Figure 4: A communication network

7 A Communication Network Problem

We have a network whose lines have the bandwidth shown in Figure 4. We wish to establish
three calls: One between A and B (call 1), one between B and C (call 2), and one between
A and C (call 3). We must give each call at least 2 units of bandwidth, but possibly more.
The link from A to B pays 3 per unit of bandwidth, from B to C pays 2, and from A to C
pays 4. Notice that each call can be routed in two ways (the long and the short path), or
by a combination (for example, two units of bandwidth via the short route, and three via
the long route). How do we route these calls to maximize the network’s income?

This is also a linear program. We have variables for each call and each path (long or
short); for example x1 is the short path for call 1, and x′

2 the long path for call 2. We
demand that (1) no edge bandwidth is exceeded, and (2) each call gets a bandwidth of 2.

max 3x1 + 3x′

1 + 2x2 + 2x′

2 + 4x3 + 4x′

3

x1 + x′

1 + x2 + x′

2 ≤ 10

x1 + x′

1 + x3 + x′

3 ≤ 12

x2 + x′

2 + x3 + x′

3 ≤ 8

x1 + x′

2 + x′

3 ≤ 6

x′

1 + x2 + x′

3 ≤ 13

x′

1 + x′

2 + x3 ≤ 11

x1 + x′

1 ≥ 2

x2 + x′

2 ≥ 2

x3 + x′

3 ≥ 2

x1, x
′

1 . . . , x′

3 ≥ 0

The solution, obtained via simplex in a few milliseconds, is the following: x1 = 0, x′

1 =
7, x2 = x′

2 = 1.5, x3 = .5, x′

3 = 4.5.


