
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 15
Lecturer: Michael Jordan October 26, 2005

Notes 15 for CS 170

1 Introduction to Dynamic Programming

Consider the following algorithm for computing the n-th Fibonacci number Fn: Recursively
apply the definition Fn = Fn−1 + Fn−2 so that a function call to compute Fn results in
two functions calls to compute Fn−1 and Fn−2, and so on. The problem with this approach
is that it is very expensive; it ends up calling a function to compute Fj for each j < n

possibly very many times, even after Fj had already been computed. We can improve this
algorithm by building a table of values of Fibonacci numbers, computing Fn by looking up
Fn−1 and Fn−2 in the table and simply adding them. This lowers the cost of computing Fn

from exponential in n to just linear in n.
This works because we can sort the problems of computing Fn simply by increasing n,

and compute and store the Fibonacci numbers with small n before computing those with
large n.

Dynamic programming uses exactly the same idea in substantially more generality:

1. Express the solution to a problem in terms of solutions to smaller problems.

2. Solve all the smallest problems first and put their solutions in a table, then solve the
next larger problems, putting their solutions into the table, solve and store the next
larger problems, and so on, up to the problem one originally wanted to solve. Each
problem should be easily solvable by looking up and combining solutions of smaller
problems in the table.

For Fibonacci numbers, how to compute Fn in terms of smaller problems Fn−1 and
Fn−2 is obvious. For more interesting problems, figuring out how to break big problems
into smaller ones is the tricky part. Once this is done, the the rest of algorithm is usually
straightforward to produce. We will illustrate by a sequence of examples, starting with
“one-dimensional” problems that are most analogous to Fibonacci.

2 String Reconstruction

Suppose that all blanks and punctuation marks have been inadvertently removed from a
text file, and its beginning was polluted with a few extraneous characters, so the file looks
something like ”lionceuponatimeinafarfarawayland...” You want to reconstruct the file using
a dictionary.

This is a typical problem solved by dynamic programming. We must define what is
an appropriate notion of subproblem. Subproblems must be ordered by size, and each
subproblem must be easily solvable, once we have the solutions to all smaller subproblems.
Once we have the right notion of a subproblem, we write the appropriate recursive equation
expressing how a subproblem is solved based on solutions to smaller subproblems, and the



Notes number 15 2

program is then trivial to write. The complexity of the dynamic programming algorithm
is precisely the total number of subproblems times the number of smaller subproblems we
must examine in order to solve a subproblem.

In this and the next few examples, we do dynamic programming on a one-dimensional
object—in this case a string, next a sequence of matrices, then a set of strings alphabetically
ordered, etc. The basic observation is this: A one-dimensional object of length n has about

n2 sub-objects (substrings, etc.), where a sub-object is defined to span the range from i to
j, where i, j ≤ n. In the present case a subproblem is to tell whether the substring of the
file from character i to j is the concatenation of words from the dictionary. Concretely, let
the file be f [1 . . . n], and consider a 2-D array of Boolean variables T (i, j), where T (i, j)
is true if and only if the string f [i . . . j] is the concatenation of words from the dictionary.
The recursive equation is this:

T (i, j) = dict(x[i . . . j]) ∨
∨

i≤k<j

[T (i, k) ∧ T (k + 1, j)]

In principle, we could write this equation verbatim as a recursive function and execute it.
The problem is that there would be exponentially many recursive calls for each short string,
and 3n calls overall.

Dynamic programming can be seen as a technique of implementing such recursive pro-
grams, that have heavy overlap between the recursion trees of the two recursive calls, so
that the recursive function is called once for each distinct argument; indeed the recursion
is usually “unwound” and disappears altogether. This is done by modifying the recursive
program so that, in place of each recursive call a table is consulted. To make sure the
needed answer is in the table, we note that the lengths of the strings on the right hand side
of the equation above are k− i+1 and j−k, a both of which are shorter than the string on
the left (of length j − i + 1). This means we can fill the table in increasing order of string

length.

for d := 0 to n−1 do ... d+1 is the size (string length) of the subproblem being solved
for i := 1 to n − d do ... the start of the subproblem being solved
j = i + d

if dict(x[i . . . j]) then T (i, j) :=true else
for k := i to j − 1 do
if T (i, k) =true and T (k + 1, j) =true then do {T (i, j) :=true}

The complexity of this program is O(n3): three nested loops, ranging each roughly over n

values.
Unfortunately, this program just returns a meaningless Boolean, and does not tell us

how to reconstruct the text. Here is how to reconstruct the text. Just expand the innermost
loop (the last assignment statement) to

{T [i, j] :=true, first[i, j] := k, exit for}
where first is an array of pointers initialized to nil. Then if T [i, j] is true, so that the

substring from i to j is indeed a concatenation of dictionary words, then first[i, j] points
to a breaking point in the interval i, j. Notice that this improves the running time, by
exiting the for loop after the first match; more optimizations are possible. This is typical
of dynamic programming algorithms: Once the basic algorithm has been derived using



Notes number 15 3

dynamic programming, clever modifications that exploit the structure of the problem speed
up its running time.

3 Edit Distance

3.1 Definition

When you run a spell checker on a text, and it finds a word not in the dictionary, it normally
proposes a choice of possible corrections.

If it finds stell it might suggest tell, swell, stull, still, steel, steal, stall,
spell, smell, shell, and sell.

As part of the heuristic used to propose alternatives, words that are “close” to the
misspelled word are proposed. We will now see a formal definition of “distance” between
strings, and a simple but efficient algorithm to compute such distance.

The distance between two strings x = x1 · · ·xn and y = y1 · · · ym is the minimum number
of “errors” (edit operations) needed to transform x into y, where possible operations are:

• insert a character.
insert(x, i, a) = x1x2 · · ·xiaxi+1 · · ·xn.

• delete a character.
delete(x, i) = xix2 · · ·xi−1xi+1 · · ·xn.

• modify a character.
modify(x, i, a) = x1x2 · · ·xi−1axi+1 · · ·xn.

For example, if x = aabab and y = babb, then one 3-steps way to go from x to y is
a a b a b x
b a a b a b x’ = insert(x,0,b)
b a b a b x” = delete (x’,2)
b a b b y = delete (x”,4)

another sequence (still in three steps) is
a a b a b x
a b a b x’ = delete (x,1)
b a b x” = delete(x’,1)
b a b b y = insert (x”,3,b)

Can you do better?

3.2 Computing Edit Distance

To transform x1 · · ·xn into y1 · · · ym we have three choices:

• put ym at the end: x → x1 · · ·xnym and then transform x1 · · ·xn into y1 · · · ym−1.

• delete xn: x → x1 · · ·xn−1 and then transform x1 · · ·xn−1 into y1 · · · ym.

• change xn into ym (if they are different): x → x1 · · ·xn−1ym and then transform
x1 · · ·xn−1 into y1 · · · ym−1.



Notes number 15 4

This suggests a recursive scheme where the sub-problems are of the form “how many
operations do we need to transform x1 · · ·xi into y1 · · · yj .

Our dynamic programming solution will be to define a (n + 1)× (m + 1) matrix M [·, ·],
that we will fill so that for every 0 ≤ i ≤ n and 0 ≤ j ≤ m, M [i, j] is the minimum number
of operations to transform x1 · · ·xi into y1 · · · yj .

The content of our matrix M can be formalized recursively as follows:

• M [0, j] = j because the only way to transform the empty string into y1 · · · yj is to add
the j characters y1, . . . , yj .

• M [i, 0] = i for similar reasons.

• For i, j ≥ 1,

M [i, j] = min{ M [i − 1, j] + 1,

M [i, j − 1] + 1,

M [i − 1, j − 1] + change(xi, yj)}

where change(xi, yj) = 1 if xi 6= yj and change(xi, yj) = 0 otherwise.

As an example, consider again x = aabab and y = babb

λ b a b b

λ 0 1 2 3 4

a 1 1 1 2 3

a 2 2 1 2 3

b 3 2 2 1 2

a 4 3 2 2 2

b 5 4 3 2 2

What is, then, the edit distance between x and y?
The table has Θ(nm) entries, each one computable in constant time. One can construct

an auxiliary table Op[·, ·] such that Op[·, ·] specifies what is the first operation to do in order
to optimally transform x1 · · ·xi into y1 · · · yj . The full algorithm that fills the matrices can
be specified in a few lines
algorithm EdDist(x,y)

n = length(x)
m = length(y)
for i = 0 to n

M [i, 0] = i

for j = 0 to m

M [0, j] = j

for i = 1 to n

for j = 1 to m

if xi == yj then change = 0 else change = 1



Notes number 15 5

M [i, j] = M [i − 1, j] + 1; Op[i, j] = delete(x, i)
if M [i, j − 1] + 1 < M [i, j] then

M [i, j] = M [i, j − 1] + 1; Op[i, j] = insert(x, i, yj)
if M [i − 1, j − 1] + change < M [i, j] then

M [i, j] = M [i − 1, j − 1] + change

if (change == 0) then Op[i, j] = none

else Op[i, j] = change(x, i, yj)

4 Longest Common Subsequence

A subsequence of a string is obtained by taking a string and possibly deleting elements.
If x1 · · ·xn is a string and 1 ≤ i1 < i2 < · · · < ik ≤ n is a strictly increasing sequence

of indices, then xi1xi2 · · ·xik is a subsequence of x. For example, art is a subsequence of
algorithm.

In the longest common subsequence problem, given strings x and y we want to find the
longest string that is a subsequence of both.

For example, art is the longest common subsequence of algorithm and parachute.
As usual, we need to find a recursive solution to our problem, and see how the problem

on strings of a certain length can be reduced to the same problem on smaller strings.
The length of the l.c.s. of x = x1 · · ·xn and y = y1 · · · ym is either

• The length of the l.c.s. of x1 · · ·xn−1 and y1 · · · ym or;

• The length of the l.c.s. of x1 · · ·xn and y1 · · · ym−1 or;

• 1 + the length of the l.c.s. of x1 · · ·xn−1 and y1 · · · ym−1, if xn = ym.

The above observation shows that the computation of the length of the l.c.s. of x and
y reduces to problems of the form “what is the length of the l.c.s. between x1 · · ·xi and
y1 · · · yi?”

Our dynamic programming solution uses an (n + 1) × (m + 1) matrix M such that for
every 0 ≤ i ≤ n and 0 ≤ j ≤ m, M [i, j] contains the length of the l.c.s. between x1 · · ·xi

and y1 · · · yj . The matrix has the following formal recursive definition

• M [i, 0] = 0

• M [0, j] = 0

•

M [i, j] = max{ M [i − 1, j]

M [i, j − 1]

M [i − 1, j − 1] + eq(xi, yj)}

where eq(xi, yj) = 1 if xi = yj , eq(xi, yj) = 0 otherwise.



Notes number 15 6

The following is the content of the matrix for the words algorithm and parachute.

λ p a r a c h u t e

λ 0 0 0 0 0 0 0 0 0 0

a 0 0 1 1 1 1 1 1 1 1

l 0 0 1 1 1 1 1 1 1 1

g 0 0 1 1 1 1 1 1 1 1

o 0 0 1 1 1 1 1 1 1 1

r 0 0 1 2 2 2 2 2 2 2

i 0 0 1 2 2 2 2 2 2 2

t 0 0 1 2 2 2 2 2 3 3

h 0 0 1 2 2 2 3 3 3 3

m 0 0 1 2 2 2 3 3 3 3

The matrix can be filled in O(nm) time. How do you reconstruct the longest common
substring given the matrix?


