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Notes 14 for CS 170

1 Bloom Filters

If the key distribution is not known, or too complicated to yield to analysis, then the use
of a particular hash function may have adverse effects: it may magnify correlations among
keys and fill the hash table non-uniformly. Last lecture we saw one technique that deals
with this phenomenon but still allows us to use simple hash functions: in universal hashing,
one of several hash functions is chosen at random. Today, we see a different technique: in
Bloom filters, several hash functions are applied to each key. Again, this allows us to use
simple hash functions while at the same time minimizing the effects of any particular hash
function.

The main purpose of Bloom filters is to build a space-efficient data structure for set
membership. Indeed, to maximize space efficiency, correctness is sacrificed: if a given key is
not in the set, then a Bloom filter may give the wrong answer (this is called a false positive),
but the probability of such a wrong answer can be made small.

A typical application of Bloom filters is web caching. An ISP may keep several levels of
carefully located caches to speed up the loading of commonly viewed web pages, in particular
for large data objects, such as images and videos. If a client requests a particular URL,
then the service needs to determine quickly if the requested page is in one of its caches.
False positives, while undesirable, are acceptable: if it turns out that a page thought to be
in a cache is not there, it will be loaded from its native URL, and the “penalty” is not much
worse than not having the cache in the first place.

So here is the formal set-up: we want to represent n-element sets S = {s1, . . . , sn} from
a very large universe U , with |U | = u � n. (Think of U as the set of URLs, n as the cache
size, and S as the URLs of those web pages that are currently in the cache.) We want to
support insertions and membership queries (“Given x ∈ U , is x ∈ S?”) so that:

1. If the answer is No, then x 6∈ S.

2. If the answer is Yes, then x may or may not be in S, but the probability that x 6∈ S

(false positive) is low.

Both insertions and membership queries should be performed in constant time. (Bloom
filters can also be made to support deletions, but we won’t worry about those.)

A Bloom filter is a bit vector B of m bits, with k independent hash functions h1, . . . , hk

that map each key in U to the set Rm = {0, 1, . . . , m − 1}. We assume that each hash
function hi maps a uniformly at random chosen key x ∈ U to each element of Rm with
equal probability. Since the hash functions are independent, it follows that the vector
(h1(x), . . . , hk(x)) is equally likely to be any of the mk k-tuples of elements from Rm.
Initially all m bits of B are set to 0.

• Insert x into S. Compute h1(x), . . . , hk(x) and set B[h1(x)] = B[h2(x)] = · · · =
B[hk(x)] = 1.
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• Query if x ∈ S. Compute h1(x), . . . , hk(x). If B[h1(x)] = B[h2(x)] = · · · =
B[hk(x)] = 1 then answer Yes, else answer No.

The running times of both operations depend only on the number k of hash functions, and
we will later see how to choose a suitable value for k in order to minimize the probability
of false positives. The space requirement of the data structure is m bits, and we will later
see that a reasonable value for m is, say, 8n. Note that any non-randomized data structure
that represents n-element subsets of U must use Ω(n · log u) bits (why?).

Bloom filters are popular with software engineers as they achieve provably good perfor-
mance (see analysis below) with little effort: simple hash functions, simple algorithms (no
collision handling etc.), efficient use of space. The main drawback of Bloom filters is that
it is difficult to store additional information with the keys in S.

2 Example

This is an unrealistically small example; its only purpose is to illustrate the possibility of
false positives. Choose m = 5 (number of bits) and k = 2 (number of hash functions):

h1(x) = x mod 5
h2(x) = (2x + 3) mod 5

We first initialize the Bloom filter B[1..5], and then insert 9 and 11:

h1(x) h2(x) B

Initialize: 0 0 0 0 0
Insert 9: 4 1 0 1 0 0 1
Insert 11: 1 0 1 1 0 0 1

Now let us attempt some membership queries:

h1(x) h2(x) Answer
Query 15: 0 3 No, not in B (correct answer)
Query 16: 1 0 Yes, in B (wrong answer: false positive)

Note that 16 was never inserted into the filter.

3 Analysis

We compute the probability of a false positive. The probability that one hash fails to set
a given a bit is 1 − 1

m . Hence, after all n elements of S have been inserted into the Bloom
filter, the probability that a specific bit is still 0 is

(

1 −
1

m

)kn

≈ e−
kn

m .

(Note that this uses the assumption that the hash functions are independent and perfectly
random.) The probability of a false positive is the probability that a specific set of k bits
are 1, which is

(

1 −

(

1 −
1

m

)kn
)k

≈
(

1 − e−
kn

m

)k
= (1 − p)k
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for p = e−kn/m. This shows that there are three performance metrics for Bloom filters that
can be traded off: computation time (corresponds to the number k of hash functions), size
(corresponds to the number m of bits), and probability of error (corresponds to the false

positive rate f = (1 − p)k).
Suppose we are given the ratio m

n and want to optimize the number k of hash functions
to minimize the false positive rate f . Note that more hash functions increase the precision
but also the number of 1’s in the filter, thus making false positives both less and more likely
at the same time. We can find the minimum by taking the derivative of f . To simplify the
math, we minimize the logarithm of f with respect to k (why is minimizing the logarithm
of a function equivalent to minimizing the function itself?). Let

g = ln(f) = k · ln(1 − p) = k · ln
(

1 − e−
kn

m

)

.

Then,

dg

dk
= ln

(

1 − e−
kn

m

)

+
kn

m
·

e−
kn

m

1 − e−
kn

m

.

We find the optimal k, or right number of hash functions to use, when the derivative is 0.
This occurs when k = (ln 2) · m

n . This can be shown to be a global minimum. For the
optimal value of k, the false positive rate is

(

1

2

)k

= (0.6185)
m

n .

Of course as m grows in proportion to n, the false positive rate decreases. Already m = 8n
reduces the chance of error to roughly 2%, and m = 10n to less than 1%. More precisely,
for m = 8n, if k = 3, then f = 0.0306; if k = 4, then f = 0.0240; if k = 5, then f = 0.0217;
if k = 6, then f = 0.0216; if k = 7, then f = 0.0229. Note that the minimum is achieved at
k = 6, but certainly k = 5 and perhaps k = 4 may be preferable from a running-time point
of view. If m = 10n, then the optimum is k = 7 with f = 0.0082.

4 References

1. B. Bloom. Space/Time Trade-offs in Hash Coding with Allowable Errors. Communi-
cations of the ACM, 13:422-426, 1970.

2. J. Byers, M. Fayed. Lecture Notes: Algorithmic Aspects of Computer Networks.
http://www.cs.bu.edu/fac/byers/courses/591/S02/SCRIBE/Lecture1.pdf.

3. L. Fan, P. Cao, J. Almeida, and A.Z. Broder. Summary Cache: A Scalable Wide-area
Cache Sharing Protocol, Proceedings of ACM SIGCOMM, 1998.

4. M. Mitzenmacher. Compressed Bloom Filters. Proceedings of ACM PODC 2001.


