
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 12
Lecturer: Michael Jordan October 19, 2005

Notes 12 for CS 170

1 Min Cut

Given an undirected graph G = (V, E), a cut is a partition of the set of vertices into two
non-empty subsets S and V − S. The cost of a cut (S, V − S) is the number of edges of E
that are incident on one vertex in S and one vertex in V − S. The global min-cut problem
(or, in short, the min-cut problem) is the problem of finding a cut (S, V − S) of minimum
cost.

Another way to look at the problem is that we are looking at the smallest set C ⊆ E of
edges such that removing those edges from the graph disconnects it. If the cost of a min-cut
in a graph is k, then removing any k−1 edges from the graph leaves it connected, but there
is a way of removing k edges that disconnects it. A graph whose min-cut has cost k is also
said to be k-connected. In a k connected graph, there are always at least k different simple
paths between any two edges. Computing the min-cut of the graph of a network is then,
for example, a way to estimate the worst-case reliability of the network.

More generally, we may be also given a weight function that associates a positive value
weight(u, v) to each edge (u, v) ∈ E. In this case, the cost of a cut (S, V − S) is the sum of
the weights of the edges that are incident on a vertex in S and a vertex in V − S.

Algorithms to compute the min-cut of a graph can be derived from network flow algo-
rithms that we will see later in the course. Such flow-based algorithms are not very efficient,
and they are complicated to implement and to analyze. Today, we will see a randomized
algorithms that seems just too simple to possibly work, and then we will see that it also
has a fairly simple analysis. A straightforward implementation of the algorithm would be
quite slow, but it is possible to optimize the implementation somewhat, and come up with
a very efficient, and still simple, randomized algorithm.

2 The Contract Algorithms

We introduce the following graph operation (that was implicit in one the minimum spanning
tree algorithms that we have seen): given an undirected graph G = (V, E), a weight function
weight() and an edge (u, v) ∈ E, contract ((u,v),G) returns a graph G′ that is identical
to G except that the vertices u and v have been replaced by a new vertex uv, and that all
neighbors of u and v in G are now neighbors of uv in G′; the weight of the edge (uv, z) in
G′ is the sum of the weights of the edges (u, z) and (v, z) in G (if any).

2.1 Algorithm

The algorithm is as follows.

Notes number 12 2

algorithm Contract(G=(V,E): graph)

while |V | > 2 do

pick at random an edge (u, v) ∈ E
// with probability proportional to weight(u, v)

(G,w) = contract(G,w,(u,v))

return names of two remaining vertices in G

Basically, the algorithm keeps contracting random edges, so that, after a few rounds,
the graph just contains a few vertices that corresponds to sets of vertices in the original
graph. When only two “macro-vertices” are left, they represent a cut, and such a cut is
returned by the algorithm.

2.2 Analysis

Our strategy will be the following. We fix a min-cut (S, V −S) in the input graph G, and we
argue that there is a reasonable probability that the algorithm converges to that particular
min-cut.

In order for the algorithm to converge to (S, V −S), it must always contract edges that
do not cross the final cut: in fact, this is a necessary and sufficient condition.

Suppose the cost of a min-cut in G is k. Then it follows that, for every vertex v
in G, the sum of the weight of the edges incident on v is at least k. (Otherwise, the
cut ({v, }, V − {v}) would be better than the optimum.) Consider now the expression
∑

v∈V

∑

(v,z)∈E weight(v, z). On the one hand, by the above argument, we have

∑

v∈V

∑

(v,z)∈E

weight(v, z) ≥
∑

v∈V

k = n · k

where n = |V |; on the other hand, the expression is counting twice the weight of every edge,
so we have

∑

v∈V

∑

(v,z)∈E

weight(v, z) = 2
∑

(v,z)∈E

weight(v, z)

Now, the probability of picking an edge is proportional to its weight, the total weight
of the cut (S, V −S) is k, the total weight of all edges is at least kn/2, it follows that there
is at least a probability 1 − 2/n of doing well in the first step of the algorithm.

If we think about it, we quickly realize that, if the algorithm does well in the first pick,
at the second stage it has a graph with n−1 nodes where the cut (S, V −S) still is optimum
and has cost k. A reasoning similar to the one above will give us that there is a probability
at least 1 − 2/(n − 1) that we do well at the second step.

Overall, we can see that the probability of converging to the cut (S, V − S) is at least

(

1 −
2

n

) (

1 −
2

n − 1

) (

1 −
2

n − 2

)

· · ·

(

1 −
2

4

) (

1 −
2

3

)

(1)

We can write Expression 1 slightly differently as

(n − 2)

n
·
(n − 3)

n − 1
·
(n − 4)

n − 2
·
(n − 5)

n − 3
· · ·

3

5
·
2

4
·
1

3

Notes number 12 3

which is clearly equal to 2/n(n − 1) > 2/n2.
Now, if we repeat the algorithm n2/2 times, the probability of not finding the cut

(S, V − S) at least once is at most

(

1 −
2

n2

)n2/2

≈ 1/e

and if we repeat the algorithm 100n2 times, the probability of finding the right cut at least
once becomes very close to 1. What we will do, then, is to repeat the algorithm 100n2

times, and then take the solution of minimum cost. At least one solution will be optimal,
and so we are done.

Notice that, in one run of the algorithm, we have a probability at least 2/n2 to converge
to each fixed optimum cut: this means that there are never more than n2/2 distinct optimum
cuts. (This is in contrast to the case of the minimum spanning tree problem, where, if the
weights are not all different, there can be an exponential number of minimal trees.)

The contract operator can be implemented in O(n) time, the operator is invoked n
times in each iteration of the basic algorithm, and we have O(n2) iterations of the basic
algorithm. In total, the running time is O(n4). The best known min-cut algorithm based
on the contract operator and on the above ideas runs in O(n2(log n)O(1)) time.

