
UC Berkeley—CS 170: Efficient Algorithms and Intractable Problems Handout 10
Lecturer: Michael Jordan October 5, 2005

Notes 10 for CS 170

1 Data Compression via Huffman Coding

Huffman codes are used for data compression. The motivations for data compression are
obvious: reducing time to transmit large files, and reducing the space required to store them
on disk or tape.

Suppose that you have a file of 100K characters. To keep the example simple, suppose
that each character is one of the 8 letters from a through h. Since we have just 8 characters,
we need just 3 bits to represent a character, so the file requires 300K bits to store. Can we
do better?

Suppose that we have more information about the file: the frequency which which each
character appears. The idea is that we will use a variable length code instead of a fixed

length code (3 bits for each character), with fewer bits to store the common characters, and
more bits to store the rare characters. At one obvious extreme, if only 2 characters actually
appeared in the file, we could represent each one with just one bit, and reduce the storage
from 300K bits to 100K bits (plus a short header explaining the encoding). It turns out
that all characters can appear, but that as long as each one does not appear nearly equally
often (100K/8 times in our case), then we can probably save space by encoding.

For example, suppose that the characters appear with the following frequencies, and
following codes:

a b c d e f g h

Frequency 45K 13K 12K 16K 9K 5K 0K 0K
Fixed-length code 000 001 010 011 100 101 110 111
Variable-length code 0 101 100 111 1101 1100 — —

Then the variable-length coded version will take not 300K bits but 45K · 1 + 13K · 3 +
12K · 3 + 16K · 3 + 9K · 4 + 5K · 4 = 224K bits to store, a 25% saving. In fact this is the
optimal way to encode the 6 characters present, as we shall see.

We will consider only codes in which no code is a prefix of any other code; such codes are
called prefix codes (though perhaps they should be called prefix-free codes). The attraction
of such codes is that it is easy to encode and decode data. To encode, we need only
concatenate the codes of consecutive characters in the message. So for example “face” is
encoded as “110001001101”. To decode, we have to decide where each code begins and
ends, since they are no longer all the same length. But this is easy, since, no codes share a
prefix. This means we need only scan the input string from left to right, and as soon as we
recognize a code, we can print the corresponding character and start looking for the next
code. In the above case, the only code that begins with “1100...” or a prefix is “f”, so we
can print “f” and start decoding “0100...”, get “a”, etc.

To see why the no-common prefix property is essential, suppose that we tried to encode
“e” with the shorter code “110”, and tried to decode “1100”; we could not tell whether this

Notes number 10 2

represented “ea” or “f”. (Furthermore, one can show that one cannot compress any better
with a non-prefix code, although we will not show this here.)

We can represent the decoding algorithm by a binary tree, where each edge represents
either 0 or 1, and each leaf corresponds to the sequence of 0s and 1s traversed to reach it, ie
a particular code. Since no prefix is shared, all legal codes are at the leaves, and decoding
a string means following edges, according to the sequence of 0s and 1s in the string, until a
leaf is reached. The tree for the above code is shown on the right below, along with a tree
on the left for the fixed length 3-bit code:

100

86 14

58 28 14

a:45

Variable Length Code

b:13 c:12 d:16 e:9 f:5

0

0

0

0

00

1

1

111

000 001 010 011 100 101

 100

a:45 55

25 30

c:12 b:13 14 d:16

f:5 e:9

0 1

0 1

1010

0 1

0

100 101 111

1100 1101

Fixed Length Code

Each leaf is labeled by the character it represents (before the colon), as well as the
frequency with which it appears in the text (after the colon, in 1000s). Each internal node
is labeled by the frequency with which all leaf nodes under it appear in the text (ie the sum
of their frequencies). The bit string representing each character is also shown beneath each
leaf.

We will denote the set of all characters by X, an arbitrary character by x ∈ X, the
frequency with with x appears by f(x), and its depth in the tree by d(x). Note that d(x)
is the number of bits in the code for x.

Given a tree T representing a prefix code, it is easy to compute the number of bits
needed to represent a file with the given frequencies f(x): B(T) =

∑
x∈X f(x)d(x), which

we call the cost of T .
The greedy algorithm for computing the optimal Huffman coding tree T given the char-

acter frequencies f(x) is as follows. It starts with a forest of one-node trees representing
each x ∈ X, and merges them in a greedy style reminiscent of Prim’s MST algorithm, using
a priority queue Q, sorted by the smallest frequency:

procedure Huffman(X, f(.))
n = |X|, the number of characters
for all x ∈ X, enqueue((x, f(x)), Q)
for i = 1 to n

allocate a new tree node z

left child =deletemin(Q)

Notes number 10 3

right child =deletemin(Q)
f(z) = f(left child) + f(right child)
Make left child and right child the children of z

enqueue((z, f(z)), Q)

The cost of this algorithm is clearly the cost of 2n deletemins and n enqueues onto the
priority queue Q. Assuming Q is implemented with a binary heap, so that these operations
cost O(log n), the whole algorithm costs O(n log n), or as much as sorting.

Here is why it works, i.e., produces the tree T minimizing B(T) over all possible trees.
We will use induction on the number of characters in X. When |X| = 2, the optimal
tree clearly has two leaves, corresponding to strings 0 and 1, which is what the algorithm
constructs. Now suppose |X| > 2. The first thing the algorithm does is make the two
lowest-frequency characters (call them x and y) into leaf nodes, create a new node z with
frequency f(z) equal to the sum of their frequencies, and apply the algorithm to the new
set X̄ = X − {x, y} ∪ {z}, which has |X̄| = |X| − 1 characters, so we can apply induction.
Thus, we can assume that the algorithm builds an optimal tree T̄ for X̄.

The trick is to show that T , gotten by adding x and y as left and right children to z in
T̄ , is also optimal. We do this by contradiction: suppose there is a better tree T ′ for X,
i.e., with a cost B(T ′) < B(T). Then we will show there is a better tree T̄ ′ for X̄, ie with
B(T̄ ′) < B(T̄), contradicting the optimality of T̄ .

First note that

B(T) = B(T̄) − f(z)d(z) + f(x)d(x) + f(y)d(y)

= B(T̄) − (f(x) + f(y))(d(x) − 1) + f(x)d(x) + f(y)d(x)

= B(T̄) + f(x) + f(y) .

Similarly, if x and y are siblings in T ′, we can build the tree T̄ ′ by removing x and y from T ′

and making their parent a leaf. The same argument shows that B(T ′) = B(T̄ ′)+f(x)+f(y).
Since this is less than B(T) = B(T̄) + f(x) + f(y), we get B(T̄ ′) < B(T̄), the contradiction
we wanted.

When x and y are not siblings in T ′, we have to work harder: we will show that there is
another optimal tree T ′′ where they are siblings, so we can apply the above argument with
T ′′ in place of T ′. To construct T ′′ from T ′, let b and c be the two siblings of maximum
depth d(b) = d(c) in T ′. Since all leaf nodes have siblings by construction, we have d(b) =
d(c) ≥ d(z) for any other leaf z. Suppose without loss of generality that f(x) ≤ f(y) and
f(b) ≤ f(c) (if this is not true, swap the labels x and y, or b and c). Then f(x) ≤ f(b)
and f(y) ≤ f(c). Then let T ′′ be the tree with b and x swapped, and c and y swapped.
Clearly x and y are siblings in T ′′. We need to show that B(T ′′) ≤ B(T ′); since we know
that B(T ′) is minimal, this will mean that B(T ′′) = B(T ′) is minimal as well. We compute
as follows (the depths d(.) refer to T ′):

B(T ′′) = B(T ′) + [−f(b)d(b) − f(x)d(x) + f(b)d(x) + f(x)d(b)]

+[−[f(c)d(c) − f(y)d(y) + f(c)d(y) + f(y)d(c)]

= B(T ′) − [(f(b) − f(x)) · (d(b) − d(x))] − [(f(c) − f(y)) · (d(c) − d(y))]

≤ B(T ′)

Notes number 10 4

since all the quantities in parenthesis are nonnegative. This completes the construction of
T ′′ and the proof.

