
UC Berkeley—CS 170 Midterm 2
Lecturer: Michael Jordan November 14

Midterm 2 for CS 170

Print your name:
,

(last) (first)

Sign your name:

Write your section number (e.g., 101):

Write your SID:

One page of notes is permitted. No electronic devices, e.g. cell phones and calculators, are
permitted. Do all your work on the pages of this examination. If you need more space, you
may use the reverse side of the page, but try to use the reverse of the same page where the
problem is stated.

You have 60 minutes. The questions are of varying difficulty, so avoid spending too long on
any one question.

In all algorithm design problems, you may use high-level pseudocode.

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO.

Problem Score/Points

1 /5

2 /9

3 /5

4 /10

5 /10

6 /10

Total /49



Date: November 14 2

1. True/False

For each statement below, say whether it is true or false by circling True or False. You
do not need to provide any explanation for your answer.

(a) True or False: The family of hash functions ha,b(x) = ax + b mod m, where a 6= 0
always forms a 2-universal hash family.

(b) True or False: If we use path compression and rank-by-union heuristics, then every
FIND operation runs in O(log∗ n) time, where n is the number of elements.

(c) True or False: If we just use rank-by-union heuristics, then every FIND operation
runs in O(log n) time, where n is the number of elements.

(d) True or False: log∗ log n = O(log log∗ n).

(e) True or False: A linear program can have infinitely many optimal solutions.

(f) True or False: You filled in your name, your TA’s name, and the section (either
section number or section time) on the first page of this test.



Date: November 14 3

2. True/False with Explanations

For each statement below, say whether it is true or false, and provide a one-sentence and/or
one-picture explanation.

(a) True or False: If the frequency of characters are unique, then the optimal prefix code
is unique.

(b) True or False: A 2-universal hash family can contain a hash function h(x) that maps
every element x to 0.

(c) True or False: Let G be an undirected, connected, weighted graph. Split G into two
equal halves, compute the MST of both halves, and connect the two MSTs with the
shortest edge possible. The resulting tree is a MST of G.



Date: November 14 4

3. A Huffman Code

Give the Huffman code for the character set {(a, 1/8), (b, 1/8), (c, 1/4), (d, 1/2)}, where the
number following the character is its frequency.

What is the expected number of bits/character for a file with the frequencies as specified
above?



Date: November 14 5

4. Solving Simple Equations

Suppose we are given a set of n variables x1, x2, . . . , xn, each of which can take one of the
values in the set {0, 1}. We are also given a set of k equations; the rth equation has the
form

(xi + xj) mod 2 = br,

for some choice of two distinct variables xi, xj , and for some value br that is either 0 or 1.
Thus each equation specifies whether the sum of two variables is even or odd.

Consider the problem of finding an assignment of values to variables that maximizes
the number of equations that are satisfied. Let c∗ denote the maximum possible number of
equations that can be satisfied by an assignment of values to variables. Give a polynomial-
time randomized algorithm such that the expected number of equations that are satisfied
is at least 1

2c
∗. (Prove that your algorithm satisfies this bound).



Date: November 14 6

5. Sums of Small Numbers

Given a nonnegative integer n, we want to determine how many strings of 1’s, 2’s, and 3’s
add up to n. For example, with n = 3 we have the strings 111, 12, 21, and 3—four of them.
With n = 5 we have thirteen: 11111, 1112, 1121, 113, 1211, 122, 131, 2111, 212, 221, 23,
311, and 32.

(a) Let T (n) be the number of such strings adding to n. Give a recurrence for T (n) when
n is positive, based on the fact that the first digit in the string may be 1, 2, or 3. What
is T (0)?

(b) Describe an efficient algorithm to compute T (n). What is its big-O running time as a
function of n?



Date: November 14 7

6. Counting Connected Components

Suppose we start with a graph with n vertices but no edges. The number of connected
components is then n. Now suppose we add m edges, e1, e2, . . . em, to the graph. Let Gk
denote the graph obtained by adding k edges e1, . . . , ek. Give a o((m+ n) log n) algorithm
to compute the number of connected components at each step k.


