Problem Set 11 for CS 170

Problem 1 [Monotone Satisfiability]

Consider an instance of Sat, specified by clauses $C_{1}, C_{2}, \ldots, C_{k}$ over a set of Boolean variables $x_{1}, x_{2}, \ldots, x_{n}$. We say that the instance is monotone if each term in each clause consists of a nonnegated variable; that is, each term is equal to x_{i}, for some i, rather than \bar{x}_{i}. Monotone instances of Sat are very easy to solve: They are always satisfiable, by setting each variable equal to 1 . For example, suppose that we have the three clauses $\left(x_{1} \vee x_{2}\right)$, $\left(x_{1} \vee x_{3}\right)$, and $\left(x_{2} \vee x_{3}\right)$. This is monotone, and indeed the assignment that sets all three variables to 1 satisfies all the clauses. But we can observe that this is not the only satisfying assignment; we could also have set x_{1} and x_{2} to 1 , and x_{3} to 0 . Indeed, for any monotone instance, it is natural to ask how few variables we need to set to 1 in order to satisfy it.

Given a monotone instance of SAt, together with a number k, the problem of Monotone Satisfiability with Few True Variables asks: Is there a satisfying assignment for the instance in which at most k variables are set to 1 ? Prove that this problem is NP-complete.

Problem 2 [Path Selection]

Consider a communications network modeled by a directed graph $G=(V, E)$. There are c users who are interested in making use of this network. User i issues a request to reserve a specific path P_{i} in G on which to transmit data. You are interested in accepting as many of these path requests as possible, subject to the following restriction: if you accept both P_{i} and P_{j}, then P_{i} and P_{j} cannot share any nodes.

Thus, the Path Selection Problem asks: given a graph G, a set of requests P_{1}, \ldots, P_{c} and a number k, is it possible to select at least k of the paths so that no two of the selected paths share any nodes? Prove that Path Selection Problem is NP-complete.

Problem 3 [Attacking Coalitions]

Consider the design of logging software for detecting attacks on a server. Suppose that the software records the IP addresses that users access on the server. Suppose that each user accesses at most one IP address in any given minute; the software writes a log file that records, for each user u and each minute u, a value $I(u, m)$ that is equal to the IP address (if any) accessed by user u during minute m. (It writes a null symbol if there is no such access).

Yesterday the system was attacked. The attack was carried out by accessing i distinct IP addresses over t consecutive minutes: In minute 1 , the attack accessed address i_{1}; in minute 2 , the attack accessed address i_{2}; and so on, to address i_{t} in minute t.

Checking the logs, it turns out that there is no single user u who accessed each of the IP addresses involved at the appropriate time; in other words, there's no u so that $I(u, m)=i_{m}$ for each minute m from 1 to t. So the question becomes: what if there were a small coalition of k users that collectively carried out the attack? We will say that a subset S of users is
a suspicious coalition if, for each minute m from 1 to t, there is at least one user $u \in S$ for which $I(u, m)=i_{m}$. The Suspicious Coalition Problem asks: Given the collection of all values $I(u, m)$, and a number k, is there a suspicious coalition of size at most k ? Prove that this problem is NP-complete.

