Problem Set 1 for CS 170

Problem 1 [Asymptotics]

Order the functions $\sqrt{n}, \log n, 100 n+\log n, \log n^{\log n}, \frac{n^{2}}{\log n}, n 2^{n}, 3^{n}, n(\log n)^{2}, \frac{n}{\log n},(\log n)^{5}$ into a list from left to right, so that if $f(n)$ is any function in the list and $g(n)$ is the function to its immediate right, we have $f(n)=O(g(n))$. You do not need to prove your answer.

Problem 2 [More Asymptotics]

Let $f(n)$ and $g(n)$ be asymptotically nonnegative functions. Prove or disprove the following:
(a) $\max (f(n), g(n))=\Theta(f(n)+g(n))$
(b) $f(n)=O(g(n))$ implies $2^{f(n)}=O\left(2^{g(n)}\right)$

Problem 3 [Recurrence Equations]

Give asymptotically tight solutions for $T(n)$. Assume throughout that $T(n)=\Theta(1)$ for n sufficiently small.
(a) $T(n)=7 T(n / 2)+n^{2}$
(b) $T(n)=3 T(n-6)+n$
(c) $T(n)=T(\sqrt{n})+1$
(d) $T(n)=2 T(n / 2)+n \lg ^{2} n$
(e) $T(n)=2 T(n / 2)+n / \lg n$

Problem 4 [A Divide and Conquer Algorithm]

Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the i th element of each list. Give an $O(\log m+\log n)$ time algorithm for computing the k th largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct).

Problem 5 [More Divide and Conquer]

Which is faster: a divide and conquer algorithm that breaks a problem of size n into two problems of size $n / 2$ at the cost of n^{2} steps or a divide and conquer algorithm that breaks a problem of size n into three problems of size $n / 2$ at the cost of n steps. Justify your answer.

Problem 6 [Order Statistics]

Show that the smallest and the second smallest of n distinct elements can be found with $n+\lceil\lg n\rceil-2$ comparisons in the worst case.

