Problem Set 1 for CS 170

Problem 1 [Asymptotics]

Order the functions \sqrt{n} , $\log n$, $100n + \log n$, $\log n^{\log n}$, $\frac{n^2}{\log n}$, $n2^n$, 3^n , $n(\log n)^2$, $\frac{n}{\log n}$, $(\log n)^5$ into a list from left to right, so that if f(n) is any function in the list and g(n) is the function to its immediate right, we have f(n) = O(g(n)). You do not need to prove your answer.

Problem 2 [More Asymptotics]

Let f(n) and g(n) be asymptotically nonnegative functions. Prove or disprove the following:

(a)
$$\max(f(n), g(n)) = \Theta(f(n) + g(n))$$

(b) f(n) = O(g(n)) implies $2^{f(n)} = O(2^{g(n)})$

Problem 3 [Recurrence Equations]

Give asymptotically tight solutions for T(n). Assume throughout that $T(n) = \Theta(1)$ for n sufficiently small.

- (a) $T(n) = 7T(n/2) + n^2$
- (b) T(n) = 3T(n-6) + n

(c)
$$T(n) = T(\sqrt{n}) + 1$$

- (d) $T(n) = 2T(n/2) + n \lg^2 n$
- (e) $T(n) = 2T(n/2) + n/\lg n$

Problem 4 [A Divide and Conquer Algorithm]

Give a divide and conquer algorithm for the following problem: you are given two sorted lists of size m and n, and are allowed unit time access to the *i*th element of each list. Give an $O(\log m + \log n)$ time algorithm for computing the *k*th largest element in the union of the two lists. (For simplicity, you can assume that the elements of the two lists are distinct).

Problem 5 [More Divide and Conquer]

Which is faster: a divide and conquer algorithm that breaks a problem of size n into two problems of size n/2 at the cost of n^2 steps or a divide and conquer algorithm that breaks a problem of size n into three problems of size n/2 at the cost of n steps. Justify your answer.

Problem 6 [Order Statistics]

Show that the smallest and the second smallest of n distinct elements can be found with $n + \lceil \lg n \rceil - 2$ comparisons in the worst case.