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Structured Classification
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Multi-Class Classification

» Multi-class classification : direct approaches
— Nearest Neighbor
— Generative approach & Naive Bayes

— Linear classification:

geometry

Perceptron

K-class (polychotomous) logistic regression
K-class SVM

« Multi-class classification through binary classification
— One-vs-All
— All-vs-all
— Others
— Calibration



Multi-label classification

e IS It eatable? Is it a banana? Is it a banana?
* IS it sweet? Is it an apple? Is it yellow?

e IS it a fruit? Is it an orange? IS it sweet?

e IS it a banana? Is it a pineapple? Is it round?

Different structures

oo 2

Nested/ Hierarchical Exclusive/ Multi-class General/Structured



Nearest Neighbor,
Decision Trees

- From the classification lecture:

NN and k-NN were already
phrased in a multi-class
framework

e For decision tree, want purity of n
leaves depending on the °
proportion of each class (want one

class to be clearly dominant)




Generative models

As In the binary case:

1. Learnp(y) and p(y|x)
2. Use Bayes rule: p(y—k|$) __ p(zly=Fk)p(y=k)

p(w)

3. Classifyas y(x) = argmaxy, p(yl|x

LS

p(y) p(xly) p(y|X)




Generative models

» Advantages:

o Fast to train: only the data from class k is needed to
learn the k' model (reduction by a factor k compared
with other method)

« Works well with little data provided the model is
reasonable

* Drawbacks:
* Depends on the quality of the model
e Doesn’t model p(y|x) directly

 With a lot of datapoints doesn’t perform as well as
discriminative methods



Nalve Bayes

Assumption:
Given the class the features are independent

@@é@ p(aly=k) = [ p(aily=F)

Features —) Bag-of-words models

Class

log p(y=k|z) = Z log p(z;|ly =k)+log p(y=k)—log p(x)

1

If the features are discrete:
logp(y=klz) = >; >, logp(u;ly=k)1{z;=u;} +logp(y=Fk) — logp(z)
logp(y=kl|z) = w) d(z) +logp(y=k) — log p(x)

p(y=k)
p(y=7)

p(y=klz)

p(y=j|x) — ( k _]) Cb( ) + log

log




|_Inear classification

Each class has a parameter vector (w,,b,)

x is assigned to class k iff w, = 4 by, > max; :p + b;

Note that we can break the symmetry and
choose (wy,b,)=0

For simplicity set b, =0
(add a dimension and include it in w,)

So learning goal given separable data: choose
w, S.t.

V(zt, yb), wyinL‘i > max; w;—xi
s

YXore 06-(1-.4;}‘;\ Scove 06 Cnnfeﬁ’,or



Three discriminative algorithms

Perceptron: max Z[ o —maxw,;r Z]

Lishike drivey, 1 &

K-class logistic regression: max ) [wy 2% — softmax w,;r Z]

[ mux condibionad Maﬁhwcﬂ] W g

K-class SVM: mua/xz [wyiTa:i — mkaX(w;Ia?i + 1{k?ﬁyi})]

[meuxh thod]



Geometry of Linear classification

Perceptron K-class logistic regression K-class SVM
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Multiclass Perceptron

Online: for each datapoint

N Update: if §; # v* then
Predict: ¢; = arg max w,, « . — U
l Y Yy wyz’t_|_1 — w’yz,t + ax
. 7
Wy t+1 — Wyt —

1 T
w = — Wi
e Advantages : T t;

» Extremely simple updates (no gradient to calculate)

* No need to have all the data in memory (some point stay classified
correctly after a while)

» Drawbacks

o If the data Is not separable decrease o slowly...



Polychotomous logistic regression

eXp w,;rcv distribution in

Zj exp ija; exponential form

p(y=kFklz) =
— R , T
logp(y=kl|z) = wyx —l0g > ;exp w; @

Online: for each datapoint ! Soft mislike ufa(a‘lfc“
wj — wj + ax'(1{j=y'} — ply=jle=2"))

Batch: all descent methods ( >
Jwl|5, |lwll1

Especially in large dimension, use regularization{ smai fiip 1abel probability
(0,0,1) — (.1,.1,.8)

Advantages: \

» Smooth function Drawbacks:

» Get probability estimates * Non sparse



Multi-class SVM

Intuitive formulation: without max [

A ZwF:ri—max<1{j#yi}+w%i>]
regularization / for the separable case "V |7 * J ’

7

Primal problem: QP _ 1
min §\|(w1,...,wK)H2-I-CZ§z'k
vk

wi,..., WK

st V(i k), wy'al—wia’ > HkEy'} - &

Solved in the dual formulation, also Quadratic Program

Main advantage: Sparsity (but not systematic)  Drawbacks:
» Speed with SMO (heuristic use of sparsity) » Need to recalculate or store x;'x;

* Sparse solutions  Qutputs not probabilities




Real world classification problems
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* The number of classes is sometimes big

» The multi-class algorithm can be heavy



Combining binary classifiers

One-vs-all For each class build a classifier for that class vs the rest

* Often very imbalanced classifiers (use asymmetric regularization)

All-vs-all For each class build a classifier for that class vs the rest

e A priori a large number of classifiers g to build but...
 The pairwise classification are way much faster
 The classifications are balanced (easier to find the best regularization)

... S0 that in many cases it Is clearly faster than one-vs-all



Guessed SF including none of the above
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Calibration

How to measure the confidence in a class prediction?
Crucial for:

1. Comparison between different classifiers

2. Ranking the prediction for ROC/Precision-Recall curve

3. Inseveral application domains having a measure of
confidence for each individual answer is very important
(e.g. tumor detection)

Some methods have an implicit notion of confidence e.g. for
SVM the distance to the class boundary relative to the size of the
margin other like logistic regression have an explicit one.



Calibration

Definition: the decision function f of a classifier is said to
be calibrated or well-calibrated if

P(x is correctly classified |f(z) = s) ~ s

Informally f is a good estimate of the probability of
classifying correctly a new datapoint x which would have

output value x.

Intuitively if the “raw” output of a classifier is g you can
calibrate it by estimating the probability of x being well
classified given that g(x)=y for all y values possible.



Calibration

Example: a logistic regression, or more generally
calculating a Bayes posterior should yield a reasonably
well-calibrated decision function.
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Combining OVA calibrated classifiers

Calibration

Class 1

Class 2

Class 3

Class 4

Renormalize

L W'Y

—> consistent (pl,pz, e ,p4,pother)

pother



Other methods for calibration

« Simple calibration
e Logistic regression
o Intraclass density estimation + Naive Bayes
e |sotonic regression

« More sophisticated calibrations

e Calibration for A-vs-A by Hastie and
Tibshirani



Structured classification



L_ocal Classification

alildE -
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Classify using local information
= Ignores correlations!

[thanks to Ben Taskar for slide!]



L_ocal Classification

to Ben Taskar for slide!]



Structured Classification

HELEE -
. =
brace v

e Use local information
e Exploit correlations

[thanks to Ben Taskar for slide!]



Structured Classification




Structured Classification

 Structured classification : direct approaches

— Generative approach: Markov Random Fields (Bayesian modeling with
graphical models)
— Linear classification:
o Structured Perceptron
» Conditional Random Fields (counterpart of logistic regression)
» Large-margin structured classification



Structured classification
Simple example HMM:

- “Label sequence”

L “Observation sequence”

Optical Character
Recognition



Tree model 1

“Label structure”

“Observations”



Tree model 1
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Eye color inheritance:

haplotype inference




Tree Model 2:
Hierarchical Text Classification
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Grid model

Image segmentation

“Labeled” image

Segmented



Structured Model

e Malin idea: define scoring function which
decomposes as sum of features scores k on “parts” p:

score(x,y,w) = w' d(x,y) =Y wy. ¢ (Xp, ¥p)
k,p
o Label examples by looking for max score:

prediction(x,w) = arg max score(X,y, w)

yeY(x) space of feasible

 Parts = nodes, edges, etc. outputs



and Features

®1(y1,92)

In undirected graphs:

cliques = groups of
completely interconnected
variables

Po(y1,71) /
/ ®1(y1,y2) = 1iffy; ="b" & yo="r"

fute) / \
= y:.‘.\ LI
~~ = . IR T §
/ ,///‘ { Po(y1,z1) = 1iffy; ="b" &
@ €\§% some “b" pixels are “on” in x;

P4(y2,Y3,Y4) = Y2 VY3V ya
. D4 (Y2, Y3, Y4)
In directed graphs:

cliques = variable+its parents



Exponential form

Once the graph is 1 T
defined the model p(x, y) = — epowk ¢k(yc, a:'C)
can be written in Z e,
exponential form ’
1 AT/ parameter vector
p(z,y) = —expw P(y,x)
Z X feature vector
Comparing two p(z,5) _ expw'®(F,x)
labellings with the — T
likelihood ratio p(z,y) expw' d(y,x)

i wins over y when w' ®(7,2) > w' ®(y,z)



Decoding and Learning

Three important operations on a general structured (e.g. graphical) model:
» Decoding: find the right label sequence ~ argmax (Y1, - Yn|T)

« Inference: compute probabilities of labels Vi,  p(y;lz)

 Learning: find model + parameters w so that decoding works

HMM example:

 Decoding: Viterbi algorithm
* Inference: forward-backward algorithm

e Learning: e.g. transition and emission counts
(case of learning a generative model from fully labeled training data)



Decoding and Learning

 Decoding: algorithm on the graph (eg. max-product)

Use dynamic

* Inference: algorithm on the graph programming to take
(eg. sum-product, belief propagation, junction tree, sampling) advantage of the
structure

 Learning: inference + optimization

1. Focus of graphical model class
2. Need 2 essential concepts:
variables that directly depend on one another

2. features (of the cligues): some functions of the cligues



Our favorite (discriminative)
algorithms

Perceptron: mvgxz [wTCD(a:i,yi) — max WTCD(CIZi,y)]
[ misde dauzn 7 @'
_ T i i T i
CRF: m“af\xz [w d (2t y) — softymaxw b (x ,y)]

(Conditional Random Field) ¢

Craxc condibindd Ul inood ]
M3net:  max - [wT¢(wi,yi) —~ m;X(f(y,yi) + WTCD(wi,y))]

L manc. ma/lgmj

T he devil 1s the detalls...



(Averaged) Perceptron

For each datapoint x°

Predict:  ¥; = argmax w; ®(x%,y)
yey

Update: Wit1 — Wt —+ Oz(CD(X, yi) — CD(X?:, S/Z))

J/

updatevif Vi Zy!

1 T
Averaged perceptron: _
ged percep Tt;



Example: multiclass setting

o - Feature encoding:
Predict: 7, = arg max Wy X ; T T
Y P(xt,y=1)' = [x* 0...0]
o(x,y=2)" = [0 Xt O]
Update: if §; # 4" then | N
wyi,t-l—l =wy¢7t-|—ax7’ CD(XZ,y = K)T — [OO L. X ]
W 41 = Wy ¢ — ax’ w' o= [w]— w;— wIT{]

Predict: y; = arg max Wtch(Xéa y)
yey

Update: Wil = Wy + Of(q)(X,y?:) — CD(X?:, 5}@))

7

upd ate if Vv, £yt



CRF
Z difficult to

T AP
compute with SXPw Cb(y |:c )

complicated 2y €XP w ! P (yla?)

graphs Conditioned on all the
observations

Introduction by Hannah M.Wallach

http://www.inference.phy.cam.ac.uk/hmw?26/crf/

MEMM & CRF, Mayssam Sayyadian, Rob McCann

anhai.cs.uiuc.edu/courses/498ad-fall04/local/my-slides/crf-students.pdf

M?3net

No Z ... The margin penalty ¢(y, y*) can “factorize”
according to the problem structure

Introduction by Simon Lacoste-Julien

http://www.cs.berkeley.edu/~slacoste/school/cs281a/project report.html
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[thanks to Ben Taskar for slide!]

Object Segmentation Results
Data: [Stanford Quad by Segbot]

Trained on 30,000 point scene
Tested on 3,000,000 point scenes

== |_aser Range Finder

% Segbot
4> M. Montemerlo

Evaluated on 180,000 point scene ¥ S Thrun

Model Error
Local learning 32%
Local prediction
Local learning 27%
+smoothing
Structured 1%
method

[Taskar+al 04,
Anguelov+Taskar+al 05]




