Evaluation of the Rate Constant for the S_N2 Reaction
CH_3F + H^- → CH_4 + F^- in the Gas Phase

Angela Merkel,* Zdeněk Havlas,† and Rudolf Zahradnik‡

Contribution from the Central Institute of Physical Chemistry of Academy of Sciences of GDR, 1199 Berlin-Adlershof, Rudower Chaussee 5, German Democratic Republic, Institute of Organic Chemistry and Biochemistry, Czechoslovak Academy of Sciences, Flemingovo nam. 16610 Prague 6, Czechoslovakia, and J. Heyrovský Institute of Physical Chemistry and Electrochemistry, Czechoslovak Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czechoslovakia. Received February 19, 1988

Abstract: Rate constants for the title reaction are calculated within the framework of statistical theories. The input data are taken mainly from recently published ab initio quantum chemical calculations. Comparison with the experimental estimate from flowing afterglow measurements by Tanaka et al. of k_exp = 1.5 × 10^11 cm^3 s^-1 shows that, for three of four input data sets, the experimental value can be reproduced with reasonable accuracy. Using two kinetic models, rate constants ranging from 2.1 × 10^12 to 4.5 × 10^11 cm^3 s^-1 are obtained for these three data sets. Variation of the kinetic model changes the rate constants by up to one order of magnitude. The remaining uncertainties should stimulate further experiments as well as higher level quantum chemical calculations and theoretical treatment of the reaction dynamics.

I. Introduction

In the theoretical investigation of the reactivity and rate constants of polyatomic reactions in the gas phase, bimolecular nucleophilic substitution (S_N2) reactions have attracted considerable attention of theorists for more than 15 years.

In contrast, nucleophilic substitutions are a much older subject in experimental chemistry. Fifty years ago, Hughes and Ingold studied these processes at a sophisticated level (for a comprehensive treatment see the monograph by Ingold1). All these studies were performed in solution. An exciting step forward was made in 1970, when an S_N2 process was observed in the gas phase2 for the first time, initiating a period of investigations in which it was possible to distinguish between the "intrinic" nucleophilic substitution and solvent effects. The activation energies for a vast number of S_N2 reactions vary typically in the range from 2.1 to 50 kcal/mol (see e.g., ref 1, 3, and 4). A significant decrease in the activation energies is observed when passing into the gas phase, as predicted5 for the Eyring theory. It was possible to classify various anion nucleophiles6 by correlation of the apparent activation energies with reaction partners were CH_3F and CH_3Cl with helium as buffer gas.7-10 Assuming that nucleophilic substitution is a direct, elementary step when crossing the barrier, investigations were performed, studying parts of the potential energy surface of various S_N2 reactions.11-14 Attempts to understand the wide range of rates for a broad spectrum of reactions in contrast to other ion molecule reactions as well as their negative temperature dependence led to the suggestion that S_N2 reactions proceed on a double-well potential surface.18 Therefore, instead of a direct process, nucleophilic substitution consists of several elementary steps: the formation and breaking of van der Waals complexes and a unimolecular isomerization step when crossing the barrier. The RRKM theory15 was used for interpretation of the measured rate constants in terms of features of the potential energy profile, and this made it possible to estimate the barrier heights for several nucleophilic substitution reactions.15-18 Both the assumption of a double-well energy profile and the kinetic description of the unimolecular elementary step within the framework of the RRKM theory permitted explanation of all the reaction efficiencies observed. Important conclusions about the nucleophilicity of different anions and leaving group abilities were drawn. These experimental findings were discussed in terms of various rate-equilibrium relationships.15-17 It was found that the Marcus theory18 was especially useful for the prediction of barrier heights for a wide variety of asymmetric S_N2 reactions.19-21 During the same period, a large number of theoretical investigations were performed, studying parts of the potential energy surface for a given S_N2 reaction employing quantum chemical methods. An excellent review of the literature up to 1981 is given in the thesis by Mitchell,22 and a recent survey forms part of an article by Basilevsky et al.23 Most of these studies deal with the elucidation of qualitative aspects of S_N2 reactions.23-25 Rather simple ab initio quantum chemical methods were

assumed to be sufficient. One of the reasons for these investigations was to explain the stereochemistry of these reactions. For instance, the principle of structural stability was used for the analysis of SN_2 processes in connection with a study in which the possible paths were considered. It turned out that, for SN_2 reactions of the $CH_3X + Y^- \rightarrow CH_3Y + X^-$ type, the backside attack is the most favorable. The main part of the calculations concentrated on numerical verification of the validity of rate-equilibrium relationships as they were used for interpretation of the experimental data. Pioneering work in this field was carried out by Mitchell, Wolfe, Shirk, and co-workers in [18, 22]. Very intensive attention was paid to the substituent effect in SN_2 processes in connection with a study in which the experimental data. Pioneering work in this field was carried out in 1976 for a series of the same type of reactions, to the activation energies and therefore cannot be neglected. In contrast, the CEPA calculations of Keil and Ahrichs, carried out in 1976 for a series of the same type of reactions, showed that electron correlation contributes up to ± 7 kcal/mol to the activation energies and therefore cannot be neglected.

A further step toward higher level quantum chemical calculations was made by Urban and co-workers using the many-body perturbation theory through the complete fourth order for the reactions $CH_3F + Y^- (Y = F, H, OH)$, [29, 30]. The resulting reaction efficiencies are compared with the experimental data. Unfortunately, because of the poor leaving group abilities of the fluoride anion (a rather high "intrinsic" barrier), rate constants for reactions with participation of CH_3F could be measured only with the flowing afterglow technique. The detection limit in this technique permits measurements on reactions with an efficiency of less than 10^{-4}, which is about one order of magnitude lower than in the ICR experiments. Therefore, for the reaction under consideration only one experimental value has so far been measured using the flowing afterglow technique. After a description of the methods employed for the rate constant calculations in section II, the values used for the calculations are summarized in section III and the results are discussed in section IV.

II. Evaluation of Rate Constants

This work was carried out to evaluate the rate constants for the reaction:

$$CH_3F + H^+ \rightarrow CH_3 + F^-$$

with a cationic species, a recent sophisticated study by Raghavachari et al.[31] showed a much smaller influence of the correlation energy than for anionic systems. Most of these studies suffered from inconsistencies in the number of stationary points along the reaction profile treated, the accuracy of the geometries and kinetic forms in the reactions.

Raghavachari et al.[31] have carried out a rate-constant calculation for the $CH_3F + F^-$ reaction using the Eyring theory. Recently, two-dimensional quantum scattering calculations were performed by Ryaboy and Basilevsky for the $CH_3F + Y^- (Y = H, F, OH)$ reactions on the basis of several ab initio characteristics.

This paper describes the evaluation of the rate constants for the $CH_3F + H^+$ reaction within the framework of the geometrical and parametrical theories. The results of the recently reported ab initio quantum chemical calculations were used as input data. The influence of the quality of the quantum chemical data on the evaluated rate constants was discussed and different kinetic models were tested. The resulting reaction efficiencies are compared with the experimental data. Unfortunately, because of the poor leaving group abilities of the fluoride anion (a rather high "intrinsic" barrier), rate constants for reactions with participation of CH_3F could be measured only with the flowing afterglow technique. The detection limit in this technique permits measurements on reactions with an efficiency of less than 10^{-4}, which is about one order of magnitude lower than in the ICR experiments. Therefore, for the reaction under consideration only one experimental value has so far been measured using the flowing afterglow technique. After a description of the methods employed for the rate constant calculations in section II, the values used for the calculations are summarized in section III and the results are discussed in section IV.
We employed the reaction scheme proposed by Brauman and co-workers.\(^\text{(9,10,13-16)}\)

The \(\text{Si}_{2}\) reaction under consideration is interpreted as a sequence of elementary steps with the corresponding rate constants (cf. Figure 1). Assuming steady-state concentrations of complexes B and D, respectively, the following expression is valid for an overall rate constant \(k^{\text{obs}}\) which corresponds to the experimental value:\(^\text{(27)}\)

\[
k^{\text{obs}} = k_{\text{AB}}k_{\text{BD}}/(1 + k_{\text{BA}}/k_{\text{BD}})
\]

Thus, knowledge of the initial part of the energy profile (from A to C in Figure 1) is sufficient for evaluation of the rate constant \(k^{\text{obs}}\).

The collision of the reactants with rate constant \(k_{\text{AB}}\) is governed by long-range ion-induced dipole and permanent dipole interactions.

Both decompositions of complex B into the reactants and products are unimolecular steps differing in the character of the corresponding activated complexes. The process \(\text{B} \rightarrow \text{D}\) possesses a "tight" transition state \(C^*\), located at the maximum C of the potential curve, and the process \(\text{B} \rightarrow \text{A}\) has a "loose" activated complex \(\text{B}^*\) due to the lack of a barrier on the potential energy surface. The position of the complex \(\text{B}^*\) is located either at the centrifugal maximum\(^\text{(18)}\) (model A in our calculations) or according to the generalized transition state theory\(^\text{(39)}\) at the minimum number of internal states along the potential profile (model B in our calculations). Rate constant \(k_{\text{BD}}\) is larger than \(k_{\text{BD}}\) (even for an energy difference \(\Delta E_{\text{ICR}} = 0\)) owing to the higher number of states for the "loose" transition state \(\text{B}^*\) compared to the "tight" one, \(C^*\).

Evaluation of \(k_{\text{AB}}\). The process \(\text{A} \rightarrow \text{B}\) with rate constant \(k_{\text{AB}}\) is governed by ion–molecule capture. The long-range potential

\[
V(r) = -\alpha_q r^2/\lambda^4
\]

for a charge-induced dipole interaction leads to the expression for the Langevin rate constant:\(^\text{(46)}\)

\[
k_{\text{L}} = 2\pi \alpha_q (\lambda/\mu)^{1/2}
\]

Here \(r\) denotes the distance between the center of mass of the ion with charge \(q\) and the molecule with polarizability \(\alpha_q\) and \(\mu\) is the reduced mass. If the molecule has a permanent dipole moment \(\mu_D\), the dipole is "locked" into the potential characterized by the expression

\[
V(r, \theta) = -\mu_D \cos \theta / \lambda^2
\]

taking into account the anharmonicity of the potential. If the angle \(\theta\) between the dipole axis and the line connecting the centers of mass is fixed at \(\theta = 0^\circ\), then an additional rate constant contribution

\[
k_D = 2\pi \mu_D (2/\pi \mu_D)^{1/2}
\]

is obtained (\(k_D\) is the Boltzmann constant). In reality a "locking" constant \(C\), smaller than unity, has been introduced\(^\text{(41)}\) so that the rate constant \(k_{\text{AB}}\) is given by the expression

\[
k_{\text{AB}} = k_l + C_D
\]

Constant \(C\) can be evaluated using the relationship proposed by Troe\(^\text{(43)}\) on the basis of the adiabatic channel model:\(^\text{(41)}\)

\[
C \approx 1 - 0.614 \exp\left(-\beta/k_B T\right)^2
\]

where \(\beta\) denotes the rotational constant assuming that complex B is linear.

Evaluation of the Ratio \(k_{\text{BD}}/k_{\text{BD}}\). Molecules of the B complex are chemically activated species (e.g., energetically excited by the reaction \(\text{A} \rightarrow \text{B}\) decomposing either into products (with the rate constant \(k_{\text{BD}}\) or back into reactants (\(k_{\text{BA}}\)). For an arbitrary pressure \(p\) (\(p\) is proportional to concentration of particles \([M]\)), the general relation is obtained (see ref 11, p 268):

\[
k_{\text{BD}} = \int k_{\text{BD}}(E) F(E)/(k_{\text{BD}}(E) + k_{\text{BA}}(E) + \omega) dE
\]

\[
k_{\text{BA}} = \int k_{\text{BA}}(E) F(E)/(k_{\text{BD}}(E) + k_{\text{BA}}(E) + \omega) dE
\]

\(F(E)\) denotes the energy distribution function of chemically activated complex B. Both the specific rate constants \(k_{\text{BA}}(E)\) and \(k_{\text{BD}}(E)\) at energy \(E\) are evaluated according to the RRKM theory:\(^\text{(11)}\)

\[
k_{\text{BA}}(E) = W_{\text{BA}}(E - \Delta E^*_{\text{BA}})/h \rho(E)
\]

\[
k_{\text{BD}}(E) = W_{\text{C}}(E - \Delta E^*_{\text{BC}} - \Delta E_{\text{ICR}})/h \rho(E)
\]

\(W_{\text{BA}}\) and \(W_{\text{C}}\) are the numbers of states at the critical configurations \(\text{BA}^*\) and \(\text{C}^*\), \(\rho\) is the density of states of the complex B, and \(h\) is the Planck constant. \(\Delta E^*_{\text{BA}}\) and \(\Delta E^*_{\text{BC}}\) denote the sum of the potential and ground state vibrational energy values of the critical configurations for the reactions \(\text{B} \rightarrow \text{A}\) and \(\text{B} \rightarrow \text{D}\). \(\Delta E_{\text{ICR}}\) approximates the change of the overall rotation

\[
\Delta E_{\text{ICR}} = k_B T (1 - I_{\text{BD}}/I_{\text{BA}})
\]

in terms of moments of inertia \(I_{\text{BD}}\) and \(I_{\text{BA}}\) of both the activated complexes.

Using the strong collision assumption, we can get the collision frequency \(\omega\) in the form of product of collision number \(Z\) and pressure \(p\) (ref 11, p 164):

\[
\omega = Zp
\]

\[
Z = (\sigma_q N_A/\pi^{1/2})^{1/2}
\]

\(\sigma_q\) is the collision diameter, \(N_A\) the Avogadro constant, \(R\) the gas constant, \(T\) the temperature, and \(\mu\) the reduced mass.

Following Olmstead and Brauman,\(^\text{(10)}\) we have taken the distribution function \(F(E)\) for this kind of chemical activation in the form:

\[
F(E) = W_{\text{BA}}(E - \Delta E^*_{\text{BA}}) \exp(-E/k_B T)/h \rho(E) dE
\]

Although the pressure in the flowing afterglow measurements is typically five orders of magnitude higher than that in the ICR measurements, the assumption \(\omega \ll k_{\text{BA}}(E), k_{\text{BD}}(E)\) is still valid (compare section III). This means that collision deactivation is negligible in comparison with decomposition of complex B. Thus, eq 10 can be simplified:

\[
k_{\text{BA}}/k_{\text{BD}} = \int k_{\text{BA}}(E)/k_{\text{BD}}(E) dE
\]

\[
k_{\text{BD}}/k_{\text{BA}} = \int k_{\text{BD}}(E)/k_{\text{BA}}(E) dE
\]

\(\text{(15)}\)

\(\text{(16)}\)

\(\text{(40)}\) Langevin, P. M. Am. Chem. Phys. 1905, 5, 245.

Table I. Geometries of the Stationary Points of Reaction CH₄F + H⁺ → CH₄ + F⁻ Completely Optimized at the MP2 Level Using the 6-311G** Basis Set

<table>
<thead>
<tr>
<th>notation</th>
<th>(r_1)</th>
<th>(r_2)</th>
<th>(r_{CH})</th>
<th>(\alpha)</th>
<th>(\beta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A⁺</td>
<td>1.3816</td>
<td>1.0917</td>
<td>109.20</td>
<td>109.74</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>2.8359</td>
<td>1.4178</td>
<td>1.0772</td>
<td>109.75</td>
<td>109.19</td>
</tr>
<tr>
<td>C</td>
<td>1.8166</td>
<td>1.7060</td>
<td>1.0744</td>
<td>96.62</td>
<td>118.69</td>
</tr>
</tbody>
</table>

- In Å and deg. For an explanation of the geometry parameters, see Figure 2.
- \(\Delta E = r_{BA} - r_{BD} \), where \(r_{BA} \) and \(r_{BD} \) are the results of quantum chemical calculations using the 6-311G** basis set.
- According to the relation: sin(2α) = 3\(\sqrt{2} \) sin α.

Table II. Vibrational Frequencies (\(\omega \)), Zero-Point Energies (\(\Delta E_Z \)), and Moments of Inertia (\(I_A, I_B, I_C \)) for Stationary Points A, B, and C (see Figure 1)

<table>
<thead>
<tr>
<th>(\Delta E) (kcal mol⁻¹)</th>
<th>A</th>
<th>B</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>MP2/6-311G**/MP2/6-311G**</td>
<td>1</td>
<td>1.38</td>
</tr>
<tr>
<td>II</td>
<td>MP2/6-311G++G**/MP2/6-311G**</td>
<td>0</td>
<td>1.12</td>
</tr>
<tr>
<td>III</td>
<td>MRCSCF+D/DZP*/MP2/6-311G**</td>
<td>0</td>
<td>3.38</td>
</tr>
<tr>
<td>IV</td>
<td>MP4(SDQTDQ)/DZP</td>
<td></td>
<td>2.0</td>
</tr>
</tbody>
</table>

- Methods and basis sets are explained in ref 32 (I-III) or in ref 29 (IV).
- Value taken from ref 34.
- Polarizability of CH₄F (au)
- Dipole moment of CH₄F (au)
- Parameter of Morse function (Å⁻¹)
- Parameter of frequency change (Å⁻¹)
- Dipole “locking” constant
- Moments of inertia for activated complex B → C

1.0 Å⁻¹ can be employed for a wide variety of complex formation reactions.

III. Details of Calculations

Geometry parameters and frequency values used for the evaluation of the rate constants are summarized in Tables I and II (or definitions, see Figure 2). Rate constant calculations were performed for four different sets of energy data. Three of them (I-III in Table III) are the results of quantum chemical calculations. Only beyond Hartree–Fock energies, including the correlation energy, were used. Data set IV was taken from the paper by Ryaboy, in which two-dimensional scattering calculations were performed and allowed for comparisons with our statistical results. The other data used in this work are summarized in Table IV. The polarizability and dipole moment of CH₄F were taken from experimental data because no reliable quantum chemical results were available.

The rate constants \(k_{BA} \) and \(k_{BD} \) were calculated according to the RRKM theory using a modified version of the program of Hase and Bunker. The number and densities of vibrational states were evaluated by a direct counting procedure and the internal rotational states were treated classically. The integration of the eq 18 was performed numerically.

For model A the maximum of the centrifugal barrier was located at a distance of 7.4 Å. The corresponding moments of inertia for the activated complex and the degeneracy factors are summarized in Table IV.
Rate Constant for CH$_3$F + H$^-$ → CH$_4$ + F$^-$

Table V. Calculated Reaction Rate k_{obs} and Efficiency of the Reaction CH$_3$F + H$^-$ → CH$_4$ + F$^-$ at $T = 300$ K

<table>
<thead>
<tr>
<th></th>
<th>k_{obs} (cm3 s$^{-1}$)</th>
<th>Efficiency</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>model A</td>
<td>model B</td>
</tr>
<tr>
<td>I</td>
<td>2.5×10^{-11}</td>
<td>6.7×10^{-12}</td>
</tr>
<tr>
<td>II</td>
<td>4.5×10^{-11}</td>
<td>1.8×10^{-11}</td>
</tr>
<tr>
<td>III</td>
<td>2.1×10^{-12}</td>
<td>2.0×10^{-12}</td>
</tr>
<tr>
<td>IV</td>
<td>1.5×10^{-11}</td>
<td>4.1×10^{-12}</td>
</tr>
<tr>
<td>expa</td>
<td>1.5×10^{-11}</td>
<td></td>
</tr>
</tbody>
</table>

aCalculated rate constant k_{BA} used in eq 3 has value 1.0×10^9 cm3 s$^{-1}$. bFor definition, see Table III. cReference 6, $k_{AB} = 7.6 \times 10^9$ cm3 s$^{-1}$.

To perform calculations according to model B, an "intuitive" reaction path was defined. We started at the equilibrium geometry of complex B with the following assumptions: (1) At a distance $r_{\text{CH}_4} = 6$ Å the product geometry of CH$_3$F is reached. (2) The change between the geometry parameters of the B complex and that of the product, CH$_3$F, is a linear function of r_{CH_4}. Quantum chemical calculations were performed for five points on the intuitive reaction path using the second-order Möller–Plesset perturbation theory (MP2) with the 6-311G** basis set.

The curve constructed from these points was compared with the semiempirical potential curve (eq 4 and 6). A Morse function (20) was fitted to the potential function:

$$V(r_{\text{CH}_4}) = D[1 - \exp(-\beta(r_{\text{CH}_4} - r_{\text{CH}_4})^2)]$$ \hspace{1cm} (20)

To estimate the value of parameter β and subsequently parameter α according to Troe’s relation, mentioned above. An average value of parameter $\beta = 0.70$ Å$^{-2}$ was found, yielding $\alpha = 0.35$ Å$^{-1}$. When using a value of $\alpha = 1.0$ Å$^{-1}$, no minimum in the number of states was found owing to the steep decrease in the frequency values.

A rough estimate of collision frequency ω according to eq 13 and 14 leads to a value of $\omega = 10^9$ s$^{-1}$ assuming collision diameter $\sigma_d = 30$ Å and pressure of 0.2 Torr. The minimum values of specific rate constants $k_{BA}(E)$ and $k_{BD}(E)$ occur at energies just above that of the barrier or the critical configuration. The minimum of the specific rate constants $k_{BD}(E)$ is smaller than $k_{BA}(E)$ owing to the higher energy of C compared to the energy of reactants A (see Table III). The rate constant $k_{BD}(E)$ is about 10^{10} s$^{-1}$, which means that the collision frequency ω is always at least two orders of magnitude smaller than $k_{BD}(E)$ (and, of course, $k_{BA}(E)$). Therefore the approximations used in eq 18 seem to be valid.

IV. Results and Discussions

The evaluated rate constants k_{obs} and corresponding efficiencies (efficiency = k_{obs}/k_{BA}) at 300 K are summarized in Table V. For data sets I–IV, the rate constants differ by less than half an order of magnitude depending on the model used. The smaller values of k_{obs} calculated for model B in comparison with model A are the consequence of larger values of k_{BA} in model B.

As far as we know, the only experimental value available for this reaction is that obtained by the flowing afterglow measurement of Tanaka et al.6 ($k_{\text{obs}} = 1.5 \times 10^{-11}$ cm3 s$^{-1}$, $T = 300$ K). We found good agreement between the results obtained using data sets I, II, and IV and the experimental value. The rate constant k_{obs} calculated with data set III is at least one order of magnitude smaller owing to the rather large reaction barrier predicted by the MCSCF–CI calculations ($E_{\text{AC}} = 3.8$ kcal/mol). Differences in the depth of minimum B have smaller influence (compare I and II) because the ratio k_{BA}/k_{BD} is almost constant although the absolute values differ appreciably. Surprisingly, we also found good agreement between the results obtained using data set IV (1.5×10^{-11} and 4.1×10^{-12} cm3 s$^{-1}$) and the results of the scattering calculations33 (1.1×10^{-11} cm3 s$^{-1}$) although both approaches are based on completely different (if not mutually exclusive) kinetic assumptions.

The experimentally estimated barrier value of 3.7 kcal/mol requires comment. It was estimated using the Arrhenius equation at a single temperature and without taking into account the ratio of the partition functions for the internal degrees of freedom of reactant A and transition state C. If the reaction is treated as a direct process according to the Eyring theory33 and using the values of the calculated barrier heights (cf. Table III), the values for k_{obs} are much smaller than the experimental rate constant (7.0×10^{-13}, 6.7×10^{-12}, 1.9×10^{-15}, 1.7×10^{-13} cm3 s$^{-1}$ for data sets I–IV, respectively.) Therefore, the experimental barrier value has to be accepted with caution.

Finally, barrier heights of 1 to 2 kcal/mol allow us to reproduce the available experimental value while higher barrier values lead to rate constants smaller than that measured by employing the statistical treatment proposed by Braunam and co-workers. Nevertheless, more experimental data seem to be necessary as well as further, more sophisticated quantum chemical calculations, in order to reach final conclusions on the mechanism, rate constants, and dynamics of this simple SN_2 reaction.