
CS-184: Computer Graphics Lecture #16: Global Illumination Prof. James O'Brien University of California, Berkeley	
Today	
The Rendering Equation Radiosity Method Photon Mapping Ambient Occlusion	

The Rendering Equation

- The light shining on x from x' is equal to:
 the emitted light from x' toward x, plus
 for each bit of surface in the scene, how much light shines from that bit onto x' and is reflected toward x, scaled appropriately

$$\left| L_s(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E(\mathbf{x}, \mathbf{x}') + \int_{S} \rho_{x'}(\mathbf{x}, \mathbf{x}'') L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right] \right|$$

The Rendering Equation

$$L_{s}(\mathbf{x},\mathbf{x}') = \delta(\mathbf{x},\mathbf{x}') \left[E(\mathbf{x},\mathbf{x}') + \int_{S} \rho_{x'}(\mathbf{x},\mathbf{x}'') L_{s}(\mathbf{x}',\mathbf{x}'') \frac{\cos(\theta')\cos(\theta'')}{||\mathbf{x}'-\mathbf{x}''||^{2}} \mathrm{d}\mathbf{x}'' \right]$$
 sum over every bit of surface in the scene scale days to the surface of the scene of t

Radiosity

- Assume all materials are perfectly Lambertian (diffuse only, no specularities)
- Removes all dependance on directions
- · Reduces dimensionality of lightfield
- Allows a FEM solution (break up into chunks)
- Can also relax assumption slightly...

Assume Lambertian

$$L_{s}(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E(\mathbf{x}, \mathbf{x}') + \int_{S} \rho_{x'}(\mathbf{x}, \mathbf{x}'') L_{s}(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta')\cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^{2}} d\mathbf{x}'' \right]$$

$$L_{s}(\mathbf{x}, \mathbf{x}') = \underbrace{\delta(\mathbf{x}, \mathbf{x}')}_{S} \left[E_{x'} + \int_{S} \rho_{x'} L_{s}(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta')\cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^{2}} d\mathbf{x}'' \right]$$
Only term dependent on \mathbf{x}

Rewrite in Terms of Radiosity

$$L_s(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E_{x'} + \int_{S} \rho_{x'} L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right]$$

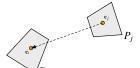
$$H_{x'} = E_{x'} + \rho_{x'} \int_{S} \delta(\mathbf{x}', \mathbf{x}'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi} d\mathbf{x}''$$

Note: we changed defn of E here.

Discretize into Patches

Piece-wise constant patches

Discretize into Patches The Candlestick Theater, Mark Mack Architects.


Discretize into Patches

The Candlestick Theater, Mark Mack Architects.

Rewrite in Terms of Patches

$$H_{x'} = E_{x'} + \rho_{x'} \int_{S} \delta(\mathbf{x}', \mathbf{x}'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi ||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}''$$

$$H_i = E_i + \rho_i \sum_j H_j \int_{S_j} \delta_{ij} \frac{\cos(\theta_i) \cos(\theta_j)}{2\pi ||\mathbf{c}_i - \mathbf{x}||^2} d\mathbf{x}$$

Form factor from j to i, F_{ij}

Example of a rough approximation:

$$F_{ij} \approx \delta_{ij} \frac{\cos(\theta_i)\cos(\theta_j)}{2\pi ||\mathbf{c}_i - \mathbf{c}_j||^2} A_{ij}$$

Radiosity Method

- Given the E_i and ρ_i
- First compute F_{ij}
- Then solve $H_i = E_i + \rho_i \sum_j H_j F_{ij}$ $(\mathbf{I} \mathbf{A})\mathbf{h} = \mathbf{c}$
- Comments:
- ullet The matrix ${f A}$ is typically very large
- · It is also sparse (why?)
- · Should be solved with an iterative method
- e.g.: Jacobi or Gauss-Seidel
- · Solution is view independent

Radiosity Method

- Given the light emitted and surface properties
- ullet First compute F_{ij} , form factors between patches
- Then solve a linear system to balance energy between all patches
- Comments:
- The system is very large
- It is also sparse (why?)
- · Should be solved with an iterative method
- · e.g.: Jacobi or Gauss-Seidel
- · Solution is view independent

15

Progressive Radiosity

• If magnitude of eigenvalues of A<1

$$(I - A)^{-1} = I + A + A^2 + A^3 + \cdots$$

- True for form-factor matrices
- Use Gauss-Seidel-like iteration but reorder by priority

$$\mathbf{h}^{k+1} = \mathbf{h}^k + \mathbf{u}^{k+1}$$

$$\mathbf{u}^{k+1} = \mathbf{A} \mathbf{u}^k$$

$$\mathbf{h}^0 = 0 \quad \mathbf{u}^0 = \mathbf{e}$$

Idea: let important sources of light energy emit first, maybe don't even bother with dark things

Southwell Relaxation

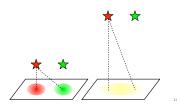
Progressive Radiosity

Touchup

- Each patch will have a constant color
- Smooth solution (e.g. average to vertices)

Example mesh for Cornell Box by Mark Schmelzenbach

16-Globallllumination.key - April 8, 2014


OtherThings

- Each patch will have a constant color
- Smooth solution (e.g. average to vertices)
- No specular reflection
- Add Phong specular term or raytraced specular reflection
- Grid artifacts
- Be clever with grid...

Hierarchical Radiosity

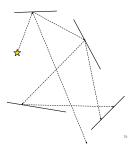
- Light smoothes with distance
- Compare $1/h^2$ with $1/(h^2+d^2)$ as h gets large

Hierarchical Radiosity

- Light smoothes with distance
- Compare $1/h^2$ with $1/(h^2+d^2)$ as h gets large
- Group patches into hierarchy
- Far interactions use lower-res form factors

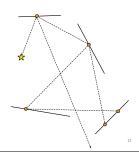
Computing Form Factors • Form factors have a geometric meaning Images from SIGGRAPH 91 Education Side Set by Stephen Spencer

Computing Form Factors • Form factors have a geometric meaning • "Hemicube" algorithm uses regular scan conversion Ingest form SiGGRAPH 93 Education Side Set by Stephen Sporcer The contribution of each cell on the surface of the homicube to the form factor will be computed. This is the delta form factor for the surface of the homicube to the homicube on the homicube of the homicube on the homicube of the h


Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion
- Also computed by ray-based sampling
- In practice, computing form factors is the bottleneck

25


Photon Mapping

- Lights cast "photons" into environment
- · Cast in random directions
- · Trace into environment
- · Store records at intersections

Photon Mapping

- Lights cast "photons" into environment
 - · Cast in random directions
- Trace into environment
- Store records at intersections
- With KD-Trees...

Comparison

Ray Tracing

Ray Tracing w/ Photon Map

Catherine Bendebury and Jonathan Michaels CS 184 Spring 2005

Photon Mapping

A ray traced image

Note: Dark shadows Unlit corners Nice reflections

Image by Per Christenser

Photon Mapping

Raw photons

Note: Noisy Sparse

mage by Per Christenser

16-Globallllumination.key - April 8, 2014

Photon Mapping

Interpolated Photons

Note: Still noisy Biased

Image by Per Christensen

31

Photon Mapping

Interpolated Photons (multiplied by diffuse)

Note: Still noisy Biased

mage by Per Christensen

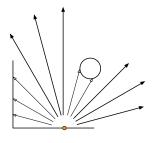
Photon Mapping • Final Gather • Ray trace scene • Direct and specular rays as normal • Diffuse rays traced into photon map • Diffuse reflection smoothes noise

Photon Mapping

Image by Per Christensen

Final Image

Note: Not noisy Nice lighting Reflections May still be biased


Final gather often bottleneck...

Ambient Occlusion

- A "hack" to create more realistic ambient illumination cheaply
- Assume light from everywhere is partially blocked by local objects
- At a point on the surface cast rays at random
- Ambient term is proportional to percent of rays that hit nothing
- Weight average by cosine of angle with normal
- Take into account how far before occluded

35

Ambient Occlusion

Ambient Occlusion

Diffuse Only Ambient Occlusion

Combined

Ambient Occlusion

