CS-184: Computer Graphics

Lecture #13: Natural Splines, B-Splines, and NURBS

Prof. James O'Brien University of California, Berkeley

Natural Splines

• Draw a "smooth" line through several points

A real draftsman's spline.

Image from Carl de Boor's webpage.

2

Natural Cubic Splines

- Given n+1 points
- \cdot Generate a curve with $\,n\,$ segments
- Curves passes through points
- Curve is ${\cal C}^2$ continuous
- Use cubics because lower order is better...

Natural Cubic Splines

$$\mathbf{x}(u) = \begin{cases} \mathbf{s}_1(u) & \text{if } 0 \leq u < 1 \\ \mathbf{s}_2(u-1) & \text{if } 1 \leq u < 2 \\ \mathbf{s}_3(u-2) & \text{if } 2 \leq u < 3 \\ & \vdots \\ \mathbf{s}_n(u-(n-1)) & \text{if } n-1 \leq u \leq n \end{cases}$$

3

Natural Cubic Splines

 $s_2 \quad u = 2$ $s_1 \quad u = 1$ $s_3 \quad u = 3$ $s_1 \quad u = n$ $s_{n-1} \quad u = n - 1$

 $s_i(0) = p_{i-1}$ $i = 1 \dots n$ $s_i(1) = p_i$ $i = 1 \dots n$

← n constraints← n constraints

 $s'_i(1) = s'_{i+1}(0)$ $i = 1 \dots n-1$ $s''_i(1) = s''_{i+1}(0)$ $i = 1 \dots n-1$ ← n-1 constraints← n-1 constraints

 $s_1''(0) = s_n''(1) = 0$

 \leftarrow 2 constraints

Total 4n constraints

Natural Cubic Splines

- Interpolate data points
- No convex hull property
- Non-local support
- Consider matrix structure...
- ${
 m \bullet } C^2$ using cubic polynomials

6

B-Splines • Goal: C^2 cubic curves with local support • Give up interpolation • Get convex hull property • Build basis by designing "hump" functions

 $\mathbf{b}(u) = \begin{cases} \mathbf{b}_{-2}(u) & \text{if } u_{-2} \leq u < u_{-1} \\ \mathbf{b}_{-1}(u) & \text{if } u_{-1} \leq u < u_{0} \\ \mathbf{b}_{+1}(u) & \text{if } u_{0} \leq u < u_{+1} \\ \mathbf{b}_{+2}(u) & \text{if } u_{+1} \leq u \leq u_{+2} \end{cases}$

 $\begin{array}{ll} b_{-2}''(u_{-2}) = b_{-2}'(u_{-2}) = b_{-2}(u_{-2}) = 0 & \quad \ \ \, \leftarrow 3 \text{ constraints} \\ b_{+2}''(u_{+2}) = b_{+2}'(u_{+2}) = b_{+2}(u_{+2}) = 0 & \quad \ \ \, \leftarrow 3 \text{ constraints} \end{array}$

 $\begin{array}{ll} b_{-2}(u_{-1}) = b_{-1}(u_{-1}) \\ b_{-1}(u_0) = b_{+1}(u_0) \\ b_{+1}(u_{+1}) = b_{+2}(u_{+1}) \end{array} \quad \longleftarrow \left[\begin{array}{ll} \text{Repeat for } b' \text{ and } b'' \\ 3 \text{x} 3 \text{=} 9 \text{ constraints} \end{array} \right.$

 $b_{-2}(u_{-2}) + b_{-1}(u_{-1}) + b_{+1}(u_0) + b_{+2}(u_{+1}) = 1 \ \ \textbf{\leftarrow 1} \ \ \text{constraint (convex hull)}$ Total 16 constraints

B-Splines

10

B-Splines	15	
$ \begin{tabular}{ll} \bullet & \be$	-	
	- III	
3-Splines	16	
• Notation $ \hbox{.} \ \text{The basis functions are the } b_i(u) \\ \hbox{.} \ \text{``Hump''} \ \text{functions are the concatenated function} \\ \hbox{.} \ \text{Sometimes the humps are called basis} \ \text{can be confusing} \\ \hbox{.} \ \text{The } \ u_i \text{are the knot locations} \\ \hbox{.} \ \text{The weights on the hump/basis functions are control points} $	-	
	- 10	

B-Splines	17
Similar construction method can give higher continuity with higher degree polynomials Repeating knots drops continuity	
Limit as knots approach each other Still cubics, so conversion to other cubic basis is just a matrix multiplication * Still cubics approach each other cubic basis is just a matrix multiplication * Still cubics approach each other cubic basis is just a matrix multiplication.	
B-Splines	18

- Geometric construction
- Due to Cox and de Boor
- My own notation, beware if you compare w/ text
- ullet Let hump centered on $\ u_i \ \ {
 m be} \ N_{i,4}(u)$

Cubic is order 4/

 $N_{i,k}(u)$ Is order k hump, centered at u_i Note: i is integer if k is even else (i+1/2) is integer

1

B-Splines

NURBS

21

- Nonuniform Rational B-Splines
- Basically B-Splines using homogeneous coordinates
- Transform under perspective projection
- A bit of extra control

NURBS

$$\mathbf{p}_i = egin{bmatrix} p_{ix} \ p_{iy} \ p_{iz} \ p_{iw} \end{bmatrix} \qquad \mathbf{x}(u) = rac{\sum_i \begin{bmatrix} p_{ix} \ p_{iy} \ p_{iz} \end{bmatrix} N_i(u)}{\sum_i p_{iw} N_i(u)}$$

Non-linear in the control points

ightharpoonup The p_{iw} are sometimes called "weights"