Natural Splines

- Draw a "smooth" line through several points

A real draftsman's spline.
Image from Carl de Boor's webpage.
Natural Cubic Splines

• Given \(n + 1 \) points
 • Generate a curve with \(n \) segments
 • Curves passes through points
 • Curve is \(C^2 \) continuous

• Use cubics because lower order is better...

\[
x(u) = \begin{cases}
 s_0(u) & \text{if } 0 \leq u < 1 \\
 s_1(u - 1) & \text{if } 1 \leq u < 2 \\
 s_2(u - 2) & \text{if } 2 \leq u < 3 \\
 \vdots \\
 s_n(u - (n - 1)) & \text{if } n - 1 \leq u \leq n
\end{cases}
\]
Natural Cubic Splines

- Interpolate data points
- No convex hull property
- Non-local support
 - Consider matrix structure...
 - C^2 using cubic polynomials

\[
\begin{align*}
 s_i(0) &= p_{i-1} & i = 1 \ldots n & \text{N constraints} \\
 s_i(1) &= p_i & i = 1 \ldots n & \text{N constraints} \\
 s_i'(1) &= s_{i-1}'(0) & i = 1 \ldots n - 1 & \text{N-1 constraints} \\
 s_i'(1) &= s_{i+1}'(0) & i = 1 \ldots n - 1 & \text{N-1 constraints} \\
 s_i''(0) &= s_i''(1) = 0 & \text{2 constraints} \\
 s_0''(1) &= 0 & \text{2 constraints} \\
\end{align*}
\]

Total 4N constraints
B-Splines

• Goal: \(c^2 \) cubic curves with local support
 • Give up interpolation
 • Get convex hull property
• Build basis by designing "hump" functions

\[
b(u) = \begin{cases} b_{3}(u) & \text{if } u_{2} \leq u < u_{1} \\
b_{2}(u) & \text{if } u_{1} \leq u < u_{0} \\
b_{1}(u) & \text{if } u_{0} \leq u < u_{1} \\
b_{0}(u) & \text{if } u_{1} \leq u \leq u_{2} \\
b_{+1}(u) & \text{if } u_{0} \leq u < u_{1} \\
b_{+2}(u) & \text{if } u_{1} \leq u \leq u_{2} \\
b_{00}(u) & \text{if } u_{2} \leq u < u_{1} \\
b_{01}(u) & \text{if } u_{1} \leq u < u_{0} \\
b_{02}(u) & \text{if } u_{0} \leq u < u_{1} \\
b_{+1}(u) & \text{if } u_{1} \leq u \leq u_{2} \\
b_{+2}(u) & \text{if } u_{0} \leq u < u_{1} \\
b_{+3}(u) & \text{if } u_{1} \leq u \leq u_{2} \\
0 & \text{else}
\end{cases}
\]

Total 15 constraints ... need one more
B-Splines

\[b(u) = \begin{cases}
 b_{i,0}(u) & \text{if } u_{i-1} \leq u < u_i \\
 b_{i,1}(u) & \text{if } u_{i-1} \leq u < u_i \\
 b_{i,2}(u) & \text{if } u_{i-1} \leq u < u_i
\end{cases} \]

\[b_{i,j}(u_{i+2}) = b_{i,j}(u_{i-2}) = 0 \quad \text{← 3 constraints} \]

\[b_{i,j}(u_{i+2}) = b_{i,j}(u_{i-2}) = 0 \quad \text{← 3 constraints} \]

\[\begin{align*}
 b_{i,j}(u_i) &= b_{i,j}(u_i) \\
 b_{i,j}(u_i) &= b_{i,j}(u_i) \\
 b_{i,j}(u_i) &= b_{i,j}(u_i)
\end{align*} \quad \text{Repeat for } y' \text{ and } y'' \]

\[3 \times 3 = 9 \text{ constraints} \]

\[b_{i,j}(u_{i+2}) + b_{i,j}(u_{i+1}) + b_{i,j}(u_{i}) + b_{i,j}(u_{i+2}) = 1 \quad \text{← 1 constraint (convex hull)} \]

Total 16 constraints
Example with end knots repeated
<table>
<thead>
<tr>
<th>B-Splines</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Build a curve w/ overlapping bumps</td>
</tr>
<tr>
<td>• Continuity</td>
</tr>
<tr>
<td>• Inside bumps C^2</td>
</tr>
<tr>
<td>• Bumps “fade out” w/ C^2 continuity</td>
</tr>
<tr>
<td>• Boundaries</td>
</tr>
<tr>
<td>• Circular</td>
</tr>
<tr>
<td>• Repeat end points</td>
</tr>
<tr>
<td>• Extra end points</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B-Splines</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Notation</td>
</tr>
<tr>
<td>• The basis functions are the $B_i(u)$</td>
</tr>
<tr>
<td>• “Hump” functions are the concatenated function</td>
</tr>
<tr>
<td>• Sometimes the humps are called basis, can be confusing</td>
</tr>
<tr>
<td>• The u_is are the knot locations</td>
</tr>
<tr>
<td>• The weights on the hump/basis functions are control points</td>
</tr>
</tbody>
</table>
B-Splines

• Similar construction method can give higher continuity with higher degree polynomials
• Repeating knots drops continuity
 • Limit as knots approach each other
• Still cubics, so conversion to other cubic basis is just a matrix multiplication

B-Splines

• Geometric construction
 • Due to Cox and de Boor
 • My own notation, beware if you compare w/ text!
• Let hump centered on u_i be $N_{i,k}(u)$
 Cubic is order 4

$N_{i,k}(u)$ is order k hump, centered at u_i

Note: i is integer if k is even
else $(i + 1/2)$ is integer
B-Splines
NURBS

- Non-uniform Rational B-Splines
 - Basically B-Splines using homogeneous coordinates
 - Transform under perspective projection
 - A bit of extra control

\[x(u) = \frac{\sum_i p_{iw} N_i(u)}{\sum_i p_{iw} N_i(u)} \]

- Non-linear in the control points
- The \(p_{iw} \) are sometimes called “weights”