CS-184: Computer Graphics Lecture #12: Curves and Surfaces Prof. James O'Brien University of California, Berkeley Today • General curve and surface representations • Splines and other polynomial bases

Geometry Representations

- Constructive Solid Geometry (CSG)
- Parametric
- Polygons
- Subdivision surfaces
- Implicit Surfaces
- Point-based Surface
- Not always clear distinctions
- i.e. CSG done with implicits

Geometry Representations

Object made by CSG Converted to polygons

Geometry Representations Object made by CSG Converted to polygons Converted to implicit surface

Geometry Representations

CSG on implicit surfaces

Geometry Representations

Point-based surface descriptions

Geometry Representations

refinement)

Images from Subdivision.org

Geometry Representations

- Various strengths and weaknesses
- · Ease of use for design
- · Ease/speed for rendering
- Simplicity
- Smoothness
- Collision detection
- Flexibility (in more than one sense)
- Suitability for simulation
- · many others...

Parametric Representations

Curves: $\boldsymbol{x} = \boldsymbol{x}(u)$ $\boldsymbol{x} \in \Re^n$ $u \in \Re$

Surfaces: $\mathbf{x} = \mathbf{x}(u, v)$ $\mathbf{x} \in \Re^n$ $u, v \in \Re$ $\mathbf{x} = \mathbf{x}(\mathbf{u})$ $\mathbf{u} \in \Re^2$

Volumes: $\mathbf{x} = \mathbf{x}(u, v, w)$ $\mathbf{x} \in \Re^n$ $u, v, w \in \Re$ $\mathbf{x} = \mathbf{x}(\mathbf{u})$ $\mathbf{u} \in \Re^3$

and so on...

Note: a vector function is really n scalar functions

Parametric Rep. Non-unique

• Same curve/surface may have multiple formulae

 $\boldsymbol{x}(u) = [u,u]$

Simple Differential Geometry

• Tangent to curve

$$t(u) = \frac{\partial x}{\partial u}\Big|_{u}$$

Tangents to surface

$$\boldsymbol{t}_{\boldsymbol{u}}(\boldsymbol{u},\boldsymbol{v}) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{u}}\bigg|_{\boldsymbol{u},\boldsymbol{v}} \qquad \boldsymbol{t}_{\boldsymbol{v}}(\boldsymbol{u},\boldsymbol{v}) = \frac{\partial \boldsymbol{x}}{\partial \boldsymbol{v}}\bigg|_{\boldsymbol{u},\boldsymbol{v}}$$

$$t_v(u, v) = \frac{\partial x}{\partial v}\Big|_{u}$$

- · Also: curvature, curve normals, curve bi-normal, others...
- Degeneracies: $\partial \boldsymbol{x}/\partial u=0$ or $\boldsymbol{t}_u\times\boldsymbol{t}_v=0$

Tangent Space

• The *tangent space* at a point on a surface is the vector space spanned by

 $\frac{\partial \mathbf{x}(\mathbf{u})}{\partial u} \qquad \frac{\partial \mathbf{x}(\mathbf{u})}{\partial v}$

- Definition assumes that these directional derivatives are linearly independent.
- Tangent space of surface may exist even if the parameterization is bad
- For surface the space is a plane
- Generalized to higher dimension manifolds

Discretization

Arbitrary curves have an uncountable number of parameters

i.e. specify function value at all points on real number line

Discretization

- Arbitrary curves have an uncountable number of parameters
- Pick *complete* set of basis functions

$$x(u) = \sum_{i=0}^{\infty} c_i \phi_i(u)$$

- Polynomials, Fourier series, etc.
- Truncate set at some reasonable point

$$x(u) = \sum_{i=0}^{3} c_i \phi_i(u) = \sum_{i=0}^{3} c_i u^i$$

- ullet Function represented by the vector (list) of $\ c_i$
- ullet The c_i may themselves be vectors

$$x(u) = \sum_{i=0}^{3} c_i \phi_i(u)$$

Polynomial Basis

Power Basis

$$x(u) = \sum_{i=0}^{d} c_i u^i$$

$$x(u) = \mathbf{C} \cdot \mathbf{P}^d$$

$$C = [c_0, c_1, c_2, \dots, c_d]$$

 $P^d = [1, u, u^2, \dots, u^d]$

The elements of \mathcal{P}^d are linearly independent i.e. no good approximation $u^k \not\approx \sum\limits_{i \neq k} c_i u^i$

$$u^k \not\approx \sum_{i \neq k} c_i v_i$$

Skipping something would lead to bad results... odd stiffness

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

$$x(0) = c_0 = x_0$$

$$x(1) = \mathbf{z} \, c_i = x_1$$

$$x'(0) = c_1 = x'_0$$

$$x'(1) = \sum i c_i = x'_1$$

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

$$\begin{bmatrix} x_0 \\ x_1 \\ x'_0 \\ x'_1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ c_3 \end{bmatrix}$$

$$\mathbf{p} = \mathbf{B} \cdot \mathbf{c}$$

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

$$\mathbf{c} = \beta_{\mathrm{H}} \cdot \mathbf{p}$$

$$x(u) = \mathcal{P}^3 \cdot \mathbf{c} = \mathcal{P}^3 \beta_{\mathrm{H}} \mathbf{p}$$

$$= \begin{bmatrix} 1 + 0u - 3u^2 + 2u^3 \\ 0 + 0u + 3u^2 - 2u^3 \\ 0 + 1u - 2u^2 + 1u^3 \\ 0 + 0u - 1u^2 + 1u^3 \end{bmatrix} \mathbf{p}$$

Specifying a Curve

Given desired values (constraints) how do we determine

the coefficients for cubic power basis?

$$\mathbf{c} = \beta_{\text{H}} \cdot \mathbf{p}$$

$$x(u) = \begin{bmatrix} 1 + 0u - 3u^2 + 2u^3 \\ 0 + 0u + 3u^2 - 2u^3 \\ 0 + 1u - 2u^2 + 1u^3 \\ 0 + 0u - 1u^2 + 1u^3 \end{bmatrix} \mathbf{p}$$

 $x(u) = \sum_{i=0}^{\infty} p_i v_i(u)$ Hermite basis functions

Specifying a Curve

Given desired values (constraints) how do we determine the coefficients for cubic power basis?

Hermite Basis

- Specify curve by
- Endpoint values
- Endpoint tangents (derivatives)
- Parameter interval is arbitrary (most times)
- Don't need to recompute basis functions
- These are *cubic* Hermite
- Could do construction for any odd degree
- $\cdot (d-1)/2$ derivatives at end points

25

Cubic Bézier

• Similar to Hermite, but specify tangents indirectly

$$x_0 = p_0$$

$$x_1 = p_3$$

$$x'_0 = 3(p_1 - p_0)$$

$$x'_1 = 3(p_3 - p_2)$$

Note: all the control points are points in space, no tangents.

Cubic Bézier

• Similar to Hermite, but specify tangents indirectly

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 2 & 3 \end{bmatrix} \mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ -3 & 3 & 0 & 0 \\ 0 & 0 & -3 & 3 \end{bmatrix} \mathbf{p}$$

$$\mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \mathbf{p}$$

$$\mathbf{c} = \boldsymbol{\beta}_{\mathbf{Z}} \mathbf{p}$$

Bézier basis functions

Bezier basis functions
$$\mathbf{c} = \boldsymbol{\beta}_{\mathbf{Z}} \, \mathbf{p} \quad \mathbf{c} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix} \mathbf{p}$$

$$x(u) = \mathcal{P}^{3} \cdot \mathbf{c}$$

$$x(u) = \begin{bmatrix} 1 - 3u + 3u^{2} - 1u^{3} \\ 0 + 3u - 6u^{2} + 3u^{3} \\ 0 + 0u + 0u^{2} + 1u^{3} \end{bmatrix} \mathbf{p}$$

$$0 = \begin{bmatrix} 1 - 3u + 3u^{2} - 1u^{3} \\ 0 + 3u - 6u^{2} + 3u^{3} \\ 0 + 0u + 0u^{2} + 1u^{3} \end{bmatrix}$$

Changing Bases

- Power basis, Hermite, and Bézier all are still just cubic polynomials
- The three basis sets all span the same space
- · Like different axes in
- Changing basis

$$\Re^{X}$$
 \Re^{4}

$$\mathbf{c} = \boldsymbol{\beta}_{z} \, \mathbf{p}_{z}$$

$$\mathbf{p}_{\mathrm{Z}} = \boldsymbol{\beta}_{\mathrm{Z}}^{-1} \, \boldsymbol{\beta}_{\mathrm{H}} \, \mathbf{p}_{\mathrm{H}}$$

 $\mathbf{c} = \boldsymbol{\beta}_{H} \, \mathbf{p}_{H}$

Useful Properties of a Basis

- Convex Hull
- · All points on curve inside convex hull of control points
- · Bézier basis has convex hull property

$$\sum_{i} b_i(u) = 1$$
 $b_i(u) \ge 0$ $\forall u \in \Omega$

Useful Properties of a Basis

- Invariance under class of transforms
- Transforming curve is same as transforming control points
- · Bézier basis invariant for affine transforms
- Bézier basis NOT invariant for perspective transforms
- NURBS are though...

$$\boldsymbol{x}(u) = \sum_{i} \boldsymbol{p}_{i} b_{i}(u) \Leftrightarrow \boldsymbol{\mathcal{T}} \boldsymbol{x}(u) = \sum_{i} (\boldsymbol{\mathcal{T}} \boldsymbol{p}_{i}) b_{i}(u)$$

31

Useful Properties of a Basis

- Local support
- · Changing one control point has limited impact on entire curve
- Nice subdivision rules
- Orthogonality ($\int_{\Omega} b_i(u)b_j(u)\mathrm{d}u = \delta_{ij}$)
- Fast evaluation scheme
- · Interpolation -vs- approximation

32

Adaptive Tessellation Midpoint test subdivision Possible problem Simple solution if curve basis has convex hull property If curve inside convex hull and the convex hull is nearly flat: curve is nearly flat and can be drawn as straight line

Better: draw convex hull Works for Bézier because the ends are

Bézier Subdivision * Form control polygon for half of curve by evaluating at u=0.5 Repeated subdivision makes smaller/flatter segments Also works for surfaces... We'll extend this idea later on...

Joining

If you change ${\it a}, {\it b}$, or ${\it c}$ you must change the others

But if you change a, b, or c you do not have to change beyond those three. *LOCAL SUPPORT*

"Hump" Functions

• Constraints at joining can be built in to make new basis

Tensor-Product Surfaces

- Surface is a curve swept through space
- Replace control points of curve with other curves

$$x(u, v) = \sum_{i} p_{i} b_{i}(u)$$
$$\sum_{i} q_{i}(v) b_{i}(u)$$

$$q_i(v) = \sum_j p_{ji} \, b_j(v)$$

$$x(u,v) = \sum_{ij} p_{ij}b_i(u)b_j(v)$$
 $b_{ij}(u,v) = b_i(u)b_j(v)$

$$b_{ij}(u,v) = b_i(u)b_j(v)$$

$$x(u,v) = \sum_{ij} p_{ij}b_{ij}(u,v)$$

Tensor-Product Surfaces

Bézier Surface Patch Bezier surface and 4 x 4 array of control points

Adaptive Tessellation · Given surface patch

- · If close to flat: draw it
- Else subdivide 4 ways

Adaptive Tessellation Avoid cracking Adaptive Tessellation Avoid cracking

Test interior and boundary of patch Split boundary based on boundary

Table of polygon patterns May wish to avoid "slivers"

Adaptive Tessellation * Triangle Based Method (no cracks) (u1 + u2)/2 u1 u2

 $(x_1+x_2)/2^{1}$

 $B((u_1+u_2)/2)$

Adaptive Tessellation • Triangle Based Method (no cracks) u_3 x_1 x_2 $||B((u_1+u_2)/2)-(x_1+x_2)/2|| < \tau ?$

