
CS-184: Computer Graphics

Lecture #9: Scan Conversion 	

!

Prof. James O’Brien	

University of California, Berkeley	
!!

V2014-S-09-1.0

With additional slides based on those of Maneesh Agrawala

���2

Today

• 2D Scan Conversion	

• Drawing Lines	

• Drawing Curves	

• Filled Polygons	

• Filling Algorithms

09-ScanConversion.key - March 2, 2014

���3

Drawing a Line
• Basically, its easy... but for the details	

• Lines are a basic primitive that needs to be done well...

���4

Drawing a Line
• Basically, its easy... but for the details	

• Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”	

by Grabli, Durand, Turquin, Sillion

09-ScanConversion.key - March 2, 2014

���5

Drawing a Line

���6

Drawing a Line

09-ScanConversion.key - March 2, 2014

���7

Drawing a Line
• Some things to consider	

• How thick are lines?	

• How should they join up?	

• Which pixels are the right ones?

For example:

���8

Drawing a Line

Inclusive	

Endpoints

09-ScanConversion.key - March 2, 2014

���9

Drawing a Line

y= m · x+b,x 2 [x1,x2]

m=
y2� y1
x2� x1

b= y1�m · x1

���10

Drawing a Line

∆x= 1
∆y= m ·∆x

x=x1!
y=y1!
while(x<=x2)!
 plot(x,y)!
 x++!
 y+=Dy

09-ScanConversion.key - March 2, 2014

���11

Drawing a Line

∆x= 1
∆y= m ·∆x
After rounding

���12

Drawing a Line

∆x= 1
∆y= m ·∆x

Accumulation of	

roundoff errors	

!
How slow is float-	

to-int conversion?

y+= ∆y

09-ScanConversion.key - March 2, 2014

���13

Drawing a Line

|m| 1 |m| > 1

���14

Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2) !
! !
 float m = float(y2-y1)/(x2-x1)!
 int x = x1!
 float y = y1!
 !
 while (x <= x2)!
 !
 setPixel(x,round(y),PIXEL_ON)!
!
 x += 1!
 y += m!

Not exact math

Accumulates errors

09-ScanConversion.key - March 2, 2014

void drawLine-Error2(int x1,x2, int y1,y2) !
! !
 float m = float(y2-y1)/(x2-x1)!
 int x = x1!
 int y = y1!
 float e = 0.0!
 !
 while (x <= x2)!
 !
 setPixel(x,y,PIXEL_ON)!
!
 x += 1!
 e += m!
 if (e >= 0.5) !
 y+=1!
 e-=1.0!

���15

No more rounding

Drawing a Line

���16

Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2) !
! !
 int x = x1!
 int y = y1!
 float e = -0.5!
 !
 while (x <= x2)!
 !
 setPixel(x,y,PIXEL_ON)!
!
 x += 1!
 e += float(y2-y1)/(x2-x1)!
 if (e >= 0.0) !
 y+=1!
 e-=1.0!

09-ScanConversion.key - March 2, 2014

���17

Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2) !
! !
 int x = x1!
 int y = y1!
 float e = -0.5*(x2-x1) // was -0.5!
 !
 while (x <= x2)!
 !
 setPixel(x,y,PIXEL_ON)!
!
 x += 1!
 e += y2-y1 // was /(x2-x1)!
 if (e >= 0.0) // no change!
 y+=1!
 e-=(x2-x1) // was 1.0!

���18

Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2) !
! !
 int x = x1!
 int y = y1!
 int e = -(x2-x1) // removed *0.5!
 !
 while (x <= x2)!
 !
 setPixel(x,y,PIXEL_ON)!
!
 x += 1!
 e += 2*(y2-y1) // added 2*!
 if (e >= 0.0) // no change!
 y+=1!
 e-=2*(x2-x1) // added 2*!

09-ScanConversion.key - March 2, 2014

���19

Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2) !
! !
 int x = x1!
 int y = y1!
 int e = -(x2-x1) !
 !
 while (x <= x2)!
 !
 setPixel(x,y,PIXEL_ON)!
!
 x += 1!
 e += 2*(y2-y1) !
 if (e >= 0.0) !
 y+=1!
 e-=2*(x2-x1) !

Faster	

Not wrong

x1 x2
0 m 1

���20

Drawing Curves

y= f (x)

Only one value of y for each value of x...

09-ScanConversion.key - March 2, 2014

���21

Drawing Curves
• Parametric curves	

• Both x and y are a function of some third parameter

y= f (u)
x= f (u)

x= f(u)

u 2 [u0 . . .u1]

���22

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

09-ScanConversion.key - March 2, 2014

���23

• Draw curves by drawing line segments	

• Must take care in computing end points for lines	

• How long should each line segment be?

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

���24

• Draw curves by drawing line segments	

• Must take care in computing end points for lines	

• How long should each line segment be?	

• Variable spaced points

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

09-ScanConversion.key - March 2, 2014

���25

Drawing Curves
• Midpoint-test subdivision

|f(umid)� l(0.5)|

���26

Drawing Curves
• Midpoint-test subdivision

|f(umid)� l(0.5)|

09-ScanConversion.key - March 2, 2014

���27

Drawing Curves
• Midpoint-test subdivision

|f(umid)� l(0.5)|

���28

Drawing Curves
• Midpoint-test subdivision	

• Not perfect	

• We need more information for a guarantee...

|f(umid)� l(0.5)|

09-ScanConversion.key - March 2, 2014

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors	

!

!

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

P3

P2

P1

P3

P2

P1

P3

P2

P1

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors	

!

!

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

09-ScanConversion.key - March 2, 2014

Triangle Scan Conversion
• Properties of a good algorithm	

! Symmetric	

! Straight edges	

! Antialiased edges	

! No cracks between adjacent primitives	

! MUST BE FAST!

P1
P2

P3

P4

Triangle Scan Conversion

P1
P2

P3

P4

• Properties of a good algorithm	

! Symmetric	

! Straight edges	

! Antialiased edges	

! No cracks between adjacent primitives	

! MUST BE FAST!

09-ScanConversion.key - March 2, 2014

• Color all pixels inside triangle

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

P3

P2

P1

• Implicit equation for a line	

! On line: 	 ax + by + c = 0	

! On right: 	 ax + by + c < 0	

! On left: 	 ax + by + c > 0

P1

P2

Line Defines Two Halfspaces

L

09-ScanConversion.key - March 2, 2014

• Point is inside triangle if it is in positive halfspace of all three
boundary lines	

! Triangle vertices are ordered counter-clockwise	

! Point must be on the left side of every boundary line

Inside Triangle Test

P
L1

L2

L3

Inside Triangle Test
Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
 Scalar d = L.a*P.x + L.b*P.y + L.c;
 if (d < 0.0) return FALSE;
 }
 return TRUE;
}

L1

L2

L3

09-ScanConversion.key - March 2, 2014

• What is bad about this algorithm?

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

P3

P2

P1

Triangle Sweep-Line Algorithm
• Take advantage of spatial coherence	

! Compute which pixels are inside using horizontal spans	

! Process horizontal spans in scan-line order	

• Take advantage of edge linearity	

! Use edge slopes to update coordinates incrementally

dx
dy

09-ScanConversion.key - March 2, 2014

Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
 initialize xL, xR;
 compute dxL/dyL and dxR/dyR;
 for each scanline at y

 for (int x = ceil(xL); x <= xR; x++)
 SetPixel(x, y, rgba);
 xL += dxL/dyL;
 xR += dxR/dyR;
 }
}

dxR

dyR
Bresenham’s algorithm 
works the same way,  
but uses only integer

operations!

dxL

dyL

xL xR

���40

Antialiasing
Desired solution of an integral over pixel

09-ScanConversion.key - March 2, 2014

Hardware Antialiasing
Supersample pixels	

• Multiple samples per pixel	

• Average subpixel intensities (box filter)	

• Trades intensity resolution for spatial resolution

���41

P1

P2

P3

Optimize for Triangles

• Spilt triangle into two parts	

• Two edges per part	

• Y-span is monotonic	

• For each row	

• Interpolate span	

• Interpolate barycentric
coordinates

���42

09-ScanConversion.key - March 2, 2014

Hardware Scan Conversion
• Convert everything into triangles	

! Scan convert the triangles

Polygon Scan Conversion
• Fill pixels inside a polygon	

! Triangle	

! Quadrilateral	

! Convex	

! Star-shaped	

! Concave	

! Self-intersecting	

! Holes

What problems do we encounter with arbitrary polygons?

09-ScanConversion.key - March 2, 2014

Polygon Scan Conversion
• Need better test for points inside polygon	

! Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4
L5

L1

L2

L3A

L4
L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

09-ScanConversion.key - March 2, 2014

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule	

! Any ray from P to infinity crosses odd number of edges

���48

Inside/Outside Testing
The Polygon Non-exterior

Non-zero winding Parity

09-ScanConversion.key - March 2, 2014

���49

Filled Polygons

���50

Filled Polygons

09-ScanConversion.key - March 2, 2014

���51

Filled Polygons

���52

Filled Polygons

09-ScanConversion.key - March 2, 2014

���53

Filled Polygons

���54

Filled Polygons

09-ScanConversion.key - March 2, 2014

���55

Filled Polygons

���56

Filled Polygons
Treat (scan y = vertex y) as (scan y >
vertex y)

09-ScanConversion.key - March 2, 2014

���57

Filled Polygons

Horizontal edges

���58

Filled Polygons

Horizontal edges

09-ScanConversion.key - March 2, 2014

���59

• “Equality Removal” applies to all vertices	

• Both x and y coordinates

Filled Polygons

���60

• Final result:

Filled Polygons

09-ScanConversion.key - March 2, 2014

���61

• Who does this pixel belong to?

Filled Polygons

1

2

3
4

5

6

���62

Drawing a Line
• How thick?	

!

!

!

• Ends?

Butt

Round

Square

09-ScanConversion.key - March 2, 2014

���63

Drawing a Line
• Joining?

Ugly Bevel Round Miter

���64

Flood Fill

09-ScanConversion.key - March 2, 2014

���65

Flood Fill

Span-Based Algorithm
Definition: a run is a horizontal span of identically colored pixels

1. Start at pixel “s”, the seed. 	

2. Find the run containing “s” (“b” to “a”). 	

3. Fill that run with the new color. 	

4. Search every pixel above run, looking for pixels of interior color
5. For each one found,	

6. Find left side of that run (“c”), and push that on a stack. 	

7. Repeat lines 4-7 for the pixels below (“d”). 	

8. Pop stack and repeat procedure with the new seed	

!
The algorithm finds runs ending at “e”, “f”, “g”, “h”, and “i”

s ba
c

d
e f g
h

i

09-ScanConversion.key - March 2, 2014

