## CS-I 84: Computer Graphics

Lecture \#8: Projection

Prof. James O'Brien
University of California, Berkeley

| Today |
| :---: |
| - Windowing and Viewing Transformations <br> - Windows and viewports <br> - Orthographic projection <br> - Perspective projection |



|  | Screen Space |
| :--- | :--- |
| - May not really be a "screen"" |  |
| - Image file <br> • Printer <br> • Other <br> - Little pixel details <br> - Sometimes odd <br> • Upside down <br> • Hexagonal |  |

Screen Space

Viewport is somewhere on screen

- You probably don't care where
- Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
- Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library)

Screen Space


Canonical View Space
Canonical view region

- 2D: $[-1,-1]$ to $[+1,+1]$
$\left[\begin{array}{c}x_{i}^{\prime} \\ y^{\prime} \\ 1\end{array}\right]=\left[\begin{array}{ccc}\frac{n_{x}}{2} & 0 & \frac{n_{x}-1}{2} \\ 0 & \frac{-n_{y}}{2} & \frac{n_{y}-1}{2} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ 1\end{array}\right]$



Canonical View Space


World Coordinates (Meters)


Canonical
Screen Space (Pixels)

Note distortion issues...
\(\left.\begin{array}{|l|l|}\hline Projection <br>
\hline - Process of going from 3D to 2D <br>
- Studies throughout history (e.g. painters) <br>
- Different types of projection <br>
- Linear <br>
- Orthographic <br>
• Perspective <br>

- Nonlinear\end{array}\right\}\)| Many special cases in books just |
| :--- |
| one of these two... |$\quad$| Orthographic is special case of |
| :--- |
| perspective... |



Ray Generation vs. Projection
Viewing in ray tracing

- start with image point
- compute ray that projects to that point
- do this using geometry

Viewing by projection

- start with 3D point
- compute image point that it projects to
- do this using transforms

Inverse processes

- ray gen. computes the preimage of projection




Orthographic Projection



Orthographic Projection

- Step I: translate center to origin


## Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\mathbf{u p}$ to $\mathbf{+ Y}$



## Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and up to $\mathbf{+} \mathbf{Y}$
- Step 3: center view volume



## Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to $\mathbf{- Z}$ and $\mathbf{u p}$ to $\mathbf{+ Y}$
- Step 3: center view volume
- Step 4: scale to canonical size



## Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate view to -Z and up to $\mathbf{+ Y}$
- Step 3: center view volume
- Step 4: scale to canonical size
$\mathbf{M}=\underline{\mathbf{S} \cdot \mathbf{T}_{2}} \cdot \underline{\mathbf{R} \cdot \mathbf{T}_{1}}$
$\mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{v}$




## Perspective Projection



Pinhole a.k.a center of projection

## Perspective Projection



Foreshortening: distant objects appear smaller

## Perspective Projection

- Vanishing points
- Depend on the scene
- Not intrinsic to camera



## Perspective Projection

```
Vanishing points
- Depend on the scene
- Not intrinsic to camera
```





## Perspective Projection

> - Step I:Translate center to origin
> - Step 2: Rotate view to $\mathbf{- Z}$, up to $+\mathbf{Y}$


## Perspective Projection

- Step 1:Translate center to origin
- Step 2: Rotate view to $\mathbf{- Z}$, up to $\mathbf{+ Y}$
- Step 3: Shear center-line to -Z axis $\quad\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$

Step 4: Perspective

$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0\end{array}\right]$

Perspective Projection
-Step 4: Perspective

- Points at $z=-i$ stay at $z=-i$
- Points at $z=-f$ stay at $z=-f$
- Points at $z=0$ goto $z= \pm \infty$
- Points at $z=-\infty$ goto $z=-(i+f)$
- $x$ and $y$ values divided by $-z / i$

Straight lines stay straight

- Depth ordering preserved in $[-i,-f]$
- Movement along lines distorted

$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0\end{array}\right]$ $\left[\begin{array}{cccc}0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0\end{array}\right]$

Perspective Projection








## Perspective Projection

- Step I:Translate center to orange
- Step 2: Rotate view to -Z, up to $\mathbf{+ Y}$
- Step 3: Shear center-line to $-\mathbf{Z}$ axis
- Step 4: Perspective
- Step 5: center view volume

Step 6: scale to canonical size


| Perspective Projection |  |
| :---: | :---: |
| - Step I:Translate center to orange <br> - Step 2: Rotate view to $\mathbf{- Z}$ up to $\mathbf{+ Y}$ | $\} \mathbf{M}_{v}$ |
| - Step 3: Shear center-line to -Z axis <br> - Step 4: Perspective | $\} \mathbf{M}_{p}$ |
| - Step 5: center view volume <br> - Step 6: scale to canonical size | $\} \mathbf{M}_{o}$ |
| $\mathbf{M}=\mathbf{M}_{o} \cdot \mathbf{M}_{p} \cdot \mathbf{M}_{v}$ |  |
|  | s |



## Vanishing Points

- Ignore $\mathbf{Z}$ part of matrix
- $\mathbf{X}$ and $\mathbf{Y}$ will give location in image plane
- Assume image plane at $z=-i$
$\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text { whatever } \\ 0 & 0 & -1 & 0\end{array}\right] \longrightarrow\left[\begin{array}{l}I_{x} \\ I_{y} \\ I_{w}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$

| Vanishing Points |
| :---: |
| $\left[\begin{array}{c}I_{x} \\ I_{y} \\ I_{w}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]\left[\begin{array}{c}x \\ y \\ z\end{array}\right]=\left[\begin{array}{c}x \\ y \\ -z\end{array}\right]$ |
| $\left[\begin{array}{l}I_{x} / I_{w} \\ I_{y} / I_{w}\end{array}\right]=\left[\begin{array}{l}-x / z \\ -y / z\end{array}\right]$ |

Vanishing Points

$$
\begin{aligned}
d_{z} & =-1 \\
{\left[\begin{array}{c}
I_{x} / I_{w} \\
I_{y} / I_{w}
\end{array}\right] } & =\left[\begin{array}{l}
-x / z \\
-y / z
\end{array}\right]=\left[\begin{array}{c}
\frac{p_{x}+t d_{x}}{-p_{z}+t} \\
\frac{p_{y}+t d_{y}}{-p_{z}+t}
\end{array}\right] \\
& \operatorname{Lim}=\left[\begin{array}{l}
d_{x} \\
d_{y}
\end{array}\right]
\end{aligned}
$$

|  | Vanishing Points |
| :--- | :--- |
| $\qquad$$\operatorname{Lim}$ <br> $t \rightarrow \pm \infty$$=\left[\begin{array}{l}d_{x} \\ d_{y}\end{array}\right]$ |  |
| - All lines in direction d converge to same point in the image <br> plane -- the vanishing point <br> - Every point in plane is a v.p. for some set of lines <br> - Lines parallel to image plane ( $d_{z}=$ Ovanish at infinity <br> What's a horizon? |  |



Right Looks Wrong (Sometimes)



## Ray Picking

- Transform from World to Screen is:
- Inverse: $\left[\begin{array}{c}I_{x} \\ I_{y} \\ I_{z} \\ I_{w}\end{array}\right]=\mathbf{M}\left[\begin{array}{l}W_{x} \\ W_{y} \\ W_{z} \\ W_{w}\end{array}\right]$
- What $\mathbf{Z}$ value? $\left[\begin{array}{c}W_{x} \\ W_{y} \\ W_{z} \\ W_{w}\end{array}\right]=\mathbf{M}^{-1}\left[\begin{array}{c}I_{x} \\ I_{y} \\ I_{z} \\ I_{w}\end{array}\right]$


Depth Distortion

- Recall depth distortion from perspective
- Interpolating in screen space different than in world

Ok, for shading (mostly)
Bad for texture


## Depth Distortion




## Depth Distortion





## Depth Distortion



Linear equations in the $a_{i}$.
Not invertible so add some extra constraints.

$$
\sum_{i} a_{i}=\sum_{i} b_{i}=1
$$



