CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O’Brien
University of California, Berkeley

Today

* Windowing and Viewing Transformations
* Windows and viewports
+ Orthographic projection
+ Perspective projection

08-Perspective.key - February 26, 2014

Screen Space

* Monitor has some number of pixels

» eg 1024 x 768

* Some sub-region used for given program

* You call it a window

+ Let’s call it a viewport instead

[1024,768]

60,350

[0,0] [0.0]

[1024,768]
690,705]

Screen Space

* May not really be a “screen”

* Image file
* Printer
+ Other

* Little pixel details
+ Sometimes odd

+ Upside down
+ Hexagonal

From Shirley textbook.

08-Perspective.key - February 26, 2014

Screen Space

* Viewport is somewhere on screen
* You probably don't care where
+ Window System likely manages this detail
+ Sometimes you care exactly where

* Viewport has a size in pixels

+ Sometimes you care (images, text, etc.)
+ Sometimes you don't (using high-level library)

Screen Space

nx-0.5,ny-0.5

Integer Pixel Addresses

J=5

05-05 i=3 10 x 10 Image Resolution

08-Perspective.key - February 26, 2014

Screen Space

1,1

Float Pixel Coordinates

v=0.55=(G+0.5)/ny

00

u=0.35=({+0.5)/nx

Canonical View Space

+ Canonical view region

+ 2D: [-1-1]to [+1+1]

+1,+1

T —=H—x=0.0, y=0.0

From Shirley textbook.

08-Perspective.key - February 26, 2014

Canonical View Space

+ Canonical view region

1.1) SR
© 2D [1-1] to [+1,41] @ E

) a-n

From Shirley textbook
(Image coordinates are up-side-down.)

/ Ny ne—1
X > 0 le x
/Nl — —ny Ny—
'y =10 7) y2 y Remove minus for right-side-up
1 00 1 |[1]
o pd

.-05)

Canonical View Space

+ Canonical view region
< D: [-1-1]to [+1,+1]
* Define arbitrary window and define objects
* Transform window to canonical region
* Do other things (we'll see clipping latter)
* Transform canonical to screen space

* Draw it.

From Shirley textbook.

08-Perspective.key - February 26, 2014

Canonical View Space

i T T R]
rJTU_T_“ FJT‘I—’E;_‘W rE——H

L

World Coordinates Canonical Screen Space
(Meters) (Pixels)

Note distortion issues...

Projection

* Process of going from 3D to 2D
* Studies throughout history (e.g. painters)
+ Different types of projection
+ Linear Many special cases in books just
+ Orthographic one of these two...
* Perspective
+ Nonlinear

Orthographic is special case of
perspective...

08-Perspective.key - February 26, 2014

Perspective Projections

Ray Generation vs. Projection

Viewing in ray tracing
« start with image point
+ compute ray that projects to that point
+ do this using geometry

Viewing by projection
« start with 3D point
+ compute image point that it projects to
« do this using transforms

Inverse processes

* ray gen. computes the preimage of projection

08-Perspective.key - February 26, 2014

Linear Projection

* Projection onto a_planar surface

* Projection directions either

+ Converge to a point
+ Are parallel (converge at infinity)

Linear Projection

+ A 2D view

Perspective

.

Orthographic

08-Perspective.key - February 26, 2014

Linear Projection

Orthographic Perspective

Linear Projection %

Orthographic Perspective

08-Perspective.key - February 26, 2014

Linear Projection

+ A 2D view

Note how different things can be seen

Parallel lines “meet” at infinity

m I
|

Perspective Orthographic

Orthographic Projection

* No foreshortening
* Parallel lines stay parallel

* Poor depth cues

08-Perspective.key - February 26, 2014

Orthographic Projection

Canonical View Space

+ Canonical view region
* 3D: [-1-1-1]to [+141,+1]
* Assume looking down -Z axis

* Recall that "Z is in your face”

(L1 i[ul]

08-Perspective.key - February 26, 2014

Orthographic Projection

+ Convert arbitrary view volume to canonical

T~

[1_,‘,];@ o

Orthographic Projection

View vector

Up vector

far,bottom,left

Center

Right = view X up near,top,right
[]

Origin *Assume up is perpendicular to view.

08-Perspective.key - February 26, 2014

Orthographic Projection

* Step I:translate center to origin

Orthographic Projection

* Step |:translate center to origin
* Step 2:rotate view to -Z and up to +Y

-

08-Perspective.key - February 26, 2014

Orthographic Projection

* Step I:translate center to origin
* Step 2:rotate view to -Z and up to +Y

* Step 3: center view volume

Orthographic Projection

* Step |:translate center to origin

* Step 2:rotate view to -Z and up to +Y
* Step 3: center view volume

* Step 4: scale to canonical size

L

08-Perspective.key - February 26, 2014

Orthographic Projection

* Step |:translate center to origin

* Step 2: rotate view to -Z and up to +Y
* Step 3: center view volume

* Step 4: scale to canonical size

-

M=S-T,-R-T,
M=M,-M,

Perspective Projection

* Foreshortening: further objects appear smaller
+ Some parallel line stay parallel, most don't
* Lines still look like lines

* Z ordering preserved (where we care)

08-Perspective.key - February 26, 2014

Perspective Projection

Pinhole a.k.a center of projection
Perspective Projection

Foreshortening: distant objects appear smaller

08-Perspective.key - February 26, 2014

Perspective Projection

* Vanishing points

* Depend on the scene
+ Not intrinsic to camera

e

“One point perspective” .,

Perspective Projection

* Vanishing points

+ Depend on the scene
+ Nor intrinsic to camera

“Two point perspective”

08-Perspective.key - February 26, 2014

Perspective Projection

* Vanishing points

* Depend on the scene
+ Not intrinsic to camera

“Three point perspective” -

Perspective Projection

08-Perspective.key - February 26, 2014

Perspective Projection

Far
J T
Near op
n / !
By
Y . Bottom

View b
Up
Center

Distance to image plane

-z i

Perspective Projection

* Step |:Translate center to origin

08-Perspective.key - February 26, 2014

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear center-line to -Z axis

08-Perspective.key - February 26, 2014

Perspective Projection

* Step |:Translate center to origin
* Step 2: Rotate view to -Z, up to +Y

* Step 3: Shear centerline to -Z axis Lo o0 o0
* Step 4: Perspective ! iff 0_
0 ; f
00 =L o
1
. I |
| | =
Perspective Projection
* Step 4: Perspective
* Points at z=-i stay at z=-i
* Points at z=-fstay at z=-f
* Points at z=0 goto z== 2
* Points at z=-% goto z=-(i+f)
* x and y values divided by -z/i
« Straight lines stay straight ro 0 0
* Depth ordering preserved in [-i,-f] (1) i+(-]f (f)
* Movement along lines distorted _[1 ‘
00 — 0

08-Perspective.key - February 26, 2014

Perspective Projection

o
5 .
: |
& yor o« !
o * f
o oo
- . . . Dg
A WRONG! 4
H 10 020
01 050
00 H—if f
00 "—1 0
1
Perspective Projection
“Eye” plane
Top
Near Far
\\\Qe
&
&
o
View vector
Z

08-Perspective.key - February 26, 2014

Perspective Projection

|

Visualizing division of x and y but not z

Perspective Projection

Motion in x,y

u

(

SN

08-Perspective.key - February 26, 2014

Perspective Projection

Note that points on near plane fixed

|

Perspective Projection

Recall that points on far plane will
stay there...

4

Il

SN

08-Perspective.key - February 26, 2014

Perspective Projection

When we also div

ide z points must

remain on straight lines

'l

Perspective Projection

s
\

Lines extend outsi

y

de view volume

=

08-Perspective.key - February 26, 2014

Perspective Projection

Motion in z

i
4
|

Perspective Projection

Motion in z

7
|4

Z

08-Perspective.key - February 26, 2014

Perspective Projection

Motion in z

i
I

Perspective Projection

Total motion

I

08-Perspective.key - February 26, 2014

Perspective Projection

* Step |:Translate center to orange

* Step 2: Rotate view to -Z, up to +Y
* Step 3: Shear center-line to -Z axis
* Step 4: Perspective

* Step 5: center view volume

* Step 6:scale to canonical size

Perspective Projection

* Step |:Translate center to orange } M
* Step 2: Rotate view to -Z, up to +Y v
* Step 3: Shear center-line to -Z axis

. IM,
* Step 4: Perspective
* Step 5: center view volume

Y M,

* Step 6:scale to canonical size

M=M,-M,-M, *¢ l .

08-Perspective.key - February 26, 2014

Perspective Projection

* There are other ways to set up the projection matrix

* View plane at z=0 zero
+ Looking down another axis
. etc...

* Functionally equivalent

Vanishing Points

+ Consider a ray:

r(t)=p+td

p/

08-Perspective.key - February 26, 2014

Vanishing Points

* Ignore Z part of matrix
* X and Y will give location in image plane

* Assume image plane at z=-i

1 0 0 O

1
01 0 O]X
whatever Iy

00 -10

Vanishing Points

I, 1 0 O01][x
I,{=10 1 O||lyl=|v»
I, 0 0 -1ffz -z

08-Perspective.key - February 26, 2014

Vanishing Points

* Assume
d =—1
p,+d,
I1./1, -x/z -p, +t
Iy/IW - —y/Z - py+tdy

-p.tt

Vanishing Points

Lim d,
t—=z0 |d

y

* All lines in direction d converge to same point in the image
plane -- the vanishing point
* Every point in plane is a v.p. for some set of lines

* Lines parallel to image plane (d, =)vanish at infinity

What's a horizon?

08-Perspective.key - February 26, 2014

Perspective Tricks

Right Looks Wrong (Sometimes)

08-Perspective.key - February 26, 2014

Right Looks Wrong (Sometimes)

Strangeness

08-Perspective.key - February 26, 2014

Strangeness

Ray Picking

* Pick object by picking point on screen

)

+ Compute ray from pixel coordinates.

08-Perspective.key - February 26, 2014

Ray Picking

* Transform from World to Screen is:

* Inverse:

~ o~~~
I
=
SIS S

* What Z value?

EEEE

Ray Picking

Depends on screen details, YMMV
General idea should translate...

* Recall that:
* Points at z=-i stay at z=-i
* Points at z=-fstay at z=-f
A, =[Sy, 8y, — i
r(t):p—l—td s [xa bR]
r(t) =a,+t(b,—a,) by = [sx,8y, — f]

08-Perspective.key - February 26, 2014

Depth Distortion

* Recall depth distortion from perspective

* Interpolating in screen space different than in world
+ Ok, for shading (mostly)
+ Bad for texture

World

Half way in world

|

spa(e

1 Screen

Half way in screen space

Depth Distortion

Sy =P/l

S = Py/hy

Sy=Py/hy

Sy = I3/h3

)

by

P

08-Perspective.key - February 26, 2014

Depth Distortion

S =P/l
Py by
Sy = Py/hy
53 = P3/h3 /
%) / B3
Sy =Py/hy X= Zsz‘[’i Q/ =Y Py
i
We know the s;, P, ,and ¥ , but notthe « . 2
Depth Distortion
S1="P1/h
P Py
Sy=Py/hy
53 = Ps/h3 /
| P
Sy = Py/hy X:zj:S/bl Q:ZPI'”"

X=Q/h= (; Pm) / (; hj"j)

08-Perspective.key - February 26, 2014

Depth Distortion

Sy =P/l
Py Py
Sy = Py/hy
53 = P3/h3 /
%) / Py
Sy =Py/hy X= Zsz‘[’i Q/ =Y Py
i
> Sib; = (Zl’lal) / (Z/p/u])
i i J
Depth Distortion
Sy =P/l
Py Py
Sy=Py/hy
S3=P3/hg3 /
3 X=3"5pb [s
Sy = Py/hy . % Q:ZPI'”'Z'

ZPib,/hi = (Z P[aZ) / (Zhjaj)
] 1 J

08-Perspective.key - February 26, 2014

Depth Distortion

Sy =Py/hy
Sy = Py/hy
3 = P3/h3

Sy = Py/hy X= L’:S.b,,

41
Py /
Q=) P
i
Z Pib/h; =
i

Independent of given vertex

locations.

b;/hi = a;/ (Zh]ﬂj) Vi
J

Py

&}

) 5]

2

Depth Distortion

S1=P/h

Sy = Py/hy

53 = P3/hg
Sy=Py/hy X= zi;S,b‘

Linear equations in the

P

Py

/

Py

bexr
i

P3

bi/hi = a;/ (th) Vi
J

J

(Z h_,a_,) bi/hi —a; =0 Vi
2

i

08-Perspective.key - February 26, 2014

Depth Distortion

S1="Pi/hy
Py Py
Sy = Py/hy
\53 = P3/h3
- Py // Py
- X =)"58, -
Sy = Py/hy le o Q=) Po;
7
Linear equations in the «; . S hjag | bi/hi —a;=0 Vi
J
Not invertible so add some
Z a; = Zb[=1
i i

extra constraints.

Depth Distortion

S1="P/ky
P Py
Sy = Py/hy
\S3 = P3/h3
S Py / P3
Sy = Py/hy X= Zi,sx’h Q/ Sy
i
For a line: ay = habi/(brhg + hibg)

For a triangle: a1 = hahgby/(hohsby + hyhgby + hihabs)

Obvious Permutations for other coefficients.

08-Perspective.key - February 26, 2014

