CS-I 84: Computer Graphics Lecture \#6: Raytracing

Prof. James O'Brien
Prof. James O'Brien
University of California, Berkeler

	Today
Raytracing • Shadows and direct lighting • Reflection and refraction - Intersection Tests • Ray-primitive	

Raytracing Assignment

Global Illumination Effects

Global Illumination Effects

Raytracing

- Scan conversion
- 3D \rightarrow 2D \rightarrow Image
- Based on transforming geometry
- Raytracing
- 3D \rightarrow Image

Geometric reasoning about light rays

Raytracing

Raytracing

Raytracing

Compute color and fill-in the pixel

Raytracing

- Basic tasks
- Build a ray
- Figure out what a ray hits
- Compute shading

```
Building Eye Rays
- Rectilinear image plane build from four points
    P
```


Shadow Rays

Detect shadow by rays to light source

Shadow Rays

- Test for occluder
- No occluder, shade normally (e.g. Phong model)
- Yes occluder, skip light (don't skip ambient)
- Self shadowing
- Add shadow bias

Test object ID

Reflection Rays

- Recursive shading

Reflection Rays

- Recursion Depth
- Truncate at fixed number of bounces
- Multiplier less than J.N.D.

Refracted Rays

- Transparent materials bend light
- Snell's Law $\frac{n_{i}}{n_{t}}=\frac{\sin \theta_{t}}{\sin \theta_{i}}$ (see clever formula in text...)
$\overline{n_{t}}=\overline{\sin \theta_{i}}$
$\sin \theta_{t}>1 \quad$ Total (internal) reflection

Refracted Rays

- Coefficient on transmitted ray depends on θ
- Schlick approximation to Fresnel Equations

$$
k_{t}\left(\theta_{i}\right)=k_{0}+\left(1-k_{0}\right)\left(1-\cos \theta_{i}\right)^{5}
$$

$$
k_{0}=\left(\frac{n_{t}-1}{n_{t}+1}\right)^{2}
$$

- Attenuation
- Wavelength (color) dependant
- Exponential with distance

Anti-Aliasing

- Desired solution of an integral over pixel

"'Distributed' Raytracing	
- Use multiple rays for reflection and refraction - At each bounce send out many extra rays - Use BRDF (or Phong approximation) for weights - How many rays?	

Depth of Field	

Other Lens Effects

Ray -vs- Sphere Test

- Ray equation: $\mathrm{R}(t)=\mathrm{A}+t \mathrm{D}$
- Implicit equation for sphere: $|\mathrm{X}-\mathrm{C}|^{2}-r^{2}=0$
- Combine:
$|\mathrm{R}(t)-\mathrm{C}|^{2}-r^{2}=0$
$|\mathrm{A}+t \mathrm{D}-\mathrm{C}|^{2}-r^{2}=0$
Quadratic equation in t

