## CS-I 84: Computer Graphics

Lecture \#4: 2D Transformations

Prof. James O'Brien
University of California, Berkeley

| Today |
| :---: |
| - 2D Transformations <br> - "Primitive" Operations <br> - Scale, Rotate, Shear, Fip,T,Tansate <br> - Homogenous Coordinates <br> - SVD <br> - Start thinking about rotations... |

$\left.\begin{array}{|l|l|}\hline & \text { Introduction } \\ \hline \text { - Transformation: } \\ \text { An operation that changes one configuration into another } \\ \text { - For images, shapes, etc. } \\ \text { A geometric transformation maps positions that define the object to } \\ \text { other positions } \\ \text { Linear transformation means the transformation is defined by a linear } \\ \text { function... which is what matrices are good for. }\end{array}\right]$

## Some Examples




## Mapping Function

$f(\mathbf{p})=\mathbf{p}^{\prime} \begin{aligned} & \text { Maps points in original image } \mathbf{p}=(\mathbf{x}, \mathbf{y})\end{aligned}$


Geometric -vs- Color Space




|  | Linear is Linear |
| :--- | :--- |
|  |  |
| - Polygons defined by points |  |
| - Interior defined by interpolation between all points |  |
| - Linear interpolation |  |



|  | Linear is Linear |
| :--- | :--- |
| - Composing two linear function is still linear |  |
| - Transform polygon by transforming vertices |  |
| $f(x)=a+b x \quad g(f)=c+d f$ |  |
| $g(x)=c+d f(x)=c+a d+b d x$ |  |
| $g(x)=a^{\prime}+b^{\prime} x$ |  |




| Linear Functions in 2D |
| :---: |
| $x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y$ |
| $y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3 y} y$ |
| $\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]+\left[\begin{array}{ll}M_{x x} & M_{x y} \\ M_{y x} & M_{y y}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$ |
| $\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}$ |

## Rotations



|  | Rotations |
| :--- | :--- |
|  |  |
| - Rotations are positive counter-clockwise |  |
| - Consistent w/ right-hand rule |  |
| - Don't be different... |  |
| - Note: |  |
| • rotate by zero degrees give identity |  |
| - rotations are modulo 360 (or $2 \pi$ ) |  |

## Rotations

- Preserve lengths and distance to origin
- Rotation matrices are orthonormal
$\operatorname{Det}(\mathbf{R})=1 \neq-1$
- In 2D rotations commute...
- But in 3D they won't!


Scales

$$
\begin{aligned}
& \text { - Diagonal matrices } \\
& \text { - Diagonal parts are scale in } \mathrm{X} \text { and scale in } \mathrm{Y} \text { directions } \\
& \text { - Negative values flip } \\
& \text { - Two negatives make a positive ( } 180 \text { deg. rotation) } \\
& \text { - Really, axis-aligned scales }
\end{aligned}
$$

## Shears

$\bigwedge_{\text {Shear }} \quad \mathbf{p}^{\prime}=\left[\begin{array}{cc}1 & H_{y x} \\ H_{x y} & 1\end{array}\right] \mathbf{p}$


Shears
-Shears are not really primitive transforms

- Related to non-axis-aligned scales
- More shortly....

|  | Translation |
| :--- | :--- |
| - This is the not-so-useful way: |  |
| Note that its not like the others. |  |
|  | $\mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$ |

## Arbitrary Matrices

For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

Soon, translations will be assimilated as well

What does an arbitrary matrix mean?

```
SingularValue Decomposition
    - For any matrix, A we can write SVD:
        A= OSR}\mp@subsup{}{}{\top
        where }\mathbf{Q}\mathrm{ and }\mathbf{R}\mathrm{ are orthonormal and }\mathbf{S}\mathrm{ is diagonal
    Can also write Polar Decomposition
        A= PRSR
    where P is also orthonormal _
```

- We can force $\mathbf{P}$ and $\mathbf{R}$ to have Det=1 so they are rotations - Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales


## Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A p}
$$

"Apply $\mathbf{A}$ to $\mathbf{p}$ and then apply $\mathbf{B}$ to that result."
$\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C p}$
Several translations composted to one

- Translations still left out..
$\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{p}+\mathbf{B t}=\mathbf{C p}+\mathbf{u}$



## Homogeneous Translation

$$
\begin{gathered}
\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{ccc}
1 & 0 & t_{x} \\
0 & 1 & t_{y} \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right] \\
\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}
\end{gathered}
$$

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.
$\left.\begin{array}{|l|}\hline \text { Homogeneous Others } \\ \qquad \widetilde{\mathbf{A}}=\left[\begin{array}{cc|}\mathbf{A} & 0 \\ 0 & 0\end{array} 1\right.\end{array}\right]$

Compositing Matrices

- Rotations and scales always about the origin
- How to rotate/scale about another point?
-VS-



## Rotate About Arb. Point

Step I:Translate point to origin
18 Translate (-C)

## Rotate About Arb. Point

- Step I:Translate point to origin
- Step 2: Rotate as desired

Translate (-C)
Rotate ( $\theta$ )



Scale About Arb. Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes



## Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

Step 3: Scale as desired


Scale About Arb. Axis

- Step 1:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired
- Steps 4\&5: Undo 2 and I (reverse order)



## Order Matters! <br> - The order that matrices appear in matters <br> $\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B A}$

Some special cases work, but they are special

- But matrices are associative
$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})$
Think about efficiency when you have many points to transform...

Matrix Inverses
In general: $\mathbf{A}^{-1}$ undoes effect of $\mathbf{A}$

- Special cases:
- Translation: negate $t_{x}$ and $t_{y}$
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

Point Vectors / Direction Vectors

- Points in space have a 1 for the " $w$ " coordinate
-What should we have for $\mathbf{a}-\mathbf{b}$ ?
- $w=0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense


For example normals do not transform normally $\mathbf{M}(\mathbf{a} \times \mathbf{b}) \neq(\mathbf{M a}) \times(\mathbf{M b})$


## Some Things Require Care

```
For example normals transform abnormally
    \downarrow~\mp@subsup{v}{t}{c}
    n}\mp@subsup{\mathbf{n}}{}{T
        n'T
```


## Some Things Require Care

For example normals transform abnormally

$\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M t} \quad$ find $\mathbf{N}$ such that $\mathbf{n}_{\mathrm{N}}^{\mathrm{T}} \mathbf{t}_{\mathbf{M}}=0$
$\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I t}=\mathbf{n}^{\mathrm{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=\mathbf{0}$
$\left(\mathbf{n}^{\mathrm{T}} \mathrm{M}^{-1}\right) \mathbf{t}_{\mathrm{M}}=0$
$\mathbf{n}_{\mathrm{N}}^{\mathrm{T}}=\mathbf{n}^{\mathbf{T}} \mathrm{M}^{-1}$

## Some Things Require Care

```
For example normals transform abnormally
```



```
\(\mathbf{n}^{T} \mathbf{t}=0 \quad \mathbf{t}_{\mathrm{M}}=\mathbf{M t} \quad\) find \(\mathbf{N}\) such that \(\mathbf{n}_{\mathrm{N}}^{\mathrm{T}} \mathbf{t}_{\mathrm{M}}=0\) \(\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M t}=\mathbf{0}\)
            (n'T}\mp@subsup{\mathbf{M}}{}{-1})\mp@subsup{\mathbf{t}}{\mathbf{M}}{=}=
            n
            \mp@subsup{n}{N}{}}=(\mp@subsup{\mathbf{n}}{}{\mathbf{T}}\mp@subsup{\mathbf{M}}{}{-1}\mp@subsup{)}{}{\mathbf{T}
            N =(M}\mp@subsup{\mathbf{M}}{}{\mathbf{1}}\mp@subsup{)}{}{\mathbf{T}}\mathrm{ See book for details
```

|  | Suggested Reading |
| :--- | :--- |
| Fundamentals of Computer Graphics by Pete Shirley |  |
| - Chapter 6 |  |
| - And re-read chapter 5 if your linear algebra is rusty! |  |
|  |  |

