CS-184: Computer Graphics	
Lecture #3: Shading	
Prof. James O'Brien	
University of California, Berkeley	

Announcements	
 Assignment 0: due this Friday Homework 1: due this Thursday Assignment 1: due February 14th 	

Today	
 Local Illumination & Shading The BRDF Simple diffuse and specular approximations Shading interpolation: flat, Gouraud, Phong Some miscellaneous tricks 	

Local Shading	
 Examples of non-local phenomena Shadows Reflections Refraction Indirect lighting 	

taining BRDFs	
sure from real materials	
the second	

Obtaining BRDFs]
Measure from real materialsComputer simulation	
 Simple model + complex geometry Derive model by analysis 	
• Make something up	
9	

Diffuse Component
• Lambert's Law
 Intensity of reflected light proportional to cosine of angle between surface and incoming light direction
 Applies to "diffuse," "Lambertian," or "matte" surfaces Independent of viewing angle
 Use as a component of non-Lambertian surfaces

Diffuse Com	ponent	
$k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})$	Comment about t	two-side lighting in text is wrong
$\max(k_d I(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}))$),0)	
*		

Specular Component
 Specular component is a mirror-like reflection
Phong Illumination Model A reasonable approximation for some surfaces
Fairly cheap to computeDepends on view direction

Specular Component	
$k_{s}I(\hat{\mathbf{r}}\cdot\hat{\mathbf{v}})^{p}$	
$k_{s}I \max(\mathbf{r} \cdot \mathbf{v}, 0)^{r}$	

Specular Component	
Computing the reflected direction	
$\hat{\mathbf{r}} = -\hat{\mathbf{l}} + 2(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}})\hat{\mathbf{n}}$	
18	

Specular Component	
Specular exponent sometimes called "roughness"	

Ambient Term	
• Really, its a cheap hack	
 Accounts for "ambient, omnidirectional light" Without it everything looks like it's in space 	
	[
	[
 22	r

Summing the Parts	
$R = k_a I + k_d I \max(\hat{\mathbf{l}} \cdot \hat{\mathbf{n}}, 0) + k_s I \max(\hat{\mathbf{r}} \cdot \hat{\mathbf{v}}, 0)^p$	
 Recall that the k₂ are by wavelength RGB in practice Sum over all lights 	
23	

Metal -vs- Plastic]
]
ž	

Metal -vs- Plastic	

Other Color Effects	
27	

Measured BRDFs	
BRDFs for automotive paint	
Images from Cornell University Program of Computer Graphics 29	

Measured BRDFs]
BRDrs for house paint	
Images from Cornell University Program of Computer Graphics 31	

Measured BRDFs	
BRDFs for lucite sheet	
Images from Cornell University Program of Computer Graphics 22	

	Details Beget Realism
	 The "computer generated" look is often due to a lack of fine/subtle details a lack of richness.
	From bustledress.com

	Direction -vs- Point Lights
	 For a point light, the light direction changes over the surface
	• For "distant" light, the direction is constant
	 Similar for orthographic/perspective viewer
	34

Falloff	
• Physically correct: $1/r^2$ light intensify falloff	
 Tends to look bad (why?) Not used in practice Sometimes compromise of 1/r used 	
	35

Surface Normals
The normal vector at a point on a surface is perpendicular to all surface tangent vectors
For triangles normal given by right-handed cross product
37

Smooth Shading
Compute "average" normal at vertices
Use threshold for "sharp" edges
 Vertex may have different normals for each face
R &
4

