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Announcements

!

• Sign up for Piazza	

!

• Assignment 0: due Friday, 11:59pm	

• Homework 1: due Thursday, 5:00pm	

!

• Waitlist...
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Today

• Color, Light, and Perceptions	

• The basics
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What is Light?
• Radiation in a particular frequency range
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Spectral Colors
• Light at a single frequency	


• Also called monochromatic (an overloaded term)	


• Bright and distinct in appearance
R o y   G.   B i v

Reproduction only, not a real spectral color!

5

���6

Other Colors
• Most colors seen are a mix light of several frequencies

Image from David Forsyth

Curves describe spectral composition          of stimulus�(�)
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• Most colors seen are a mix light of several frequencies

Other Colors

Image from David Forsyth
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• Most colors seen are a mix light of several frequencies

Other Colors

Image from David Forsyth
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Perception -vs- Measurement

• You do not “see” the spectrum of light	

• Eyes make limited measurements	

• Eyes physically adapt to circumstance	

• You brain adapts in various ways also	

• Weird psychological/psychophysical stuff also happens
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Everything is Relative 10

02-Color.key - January 26, 2014



���11

Everything is Relative 11
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Adapt 12
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Adapt 13
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Mach Bands 14
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Everything’s Still Relative 15

Bezold Effect

���16

16

02-Color.key - January 26, 2014



���17

Perception
The eye does not see intensity values...
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The eye does not see intensity values...
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Perception 18
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The eye does not see intensity values...
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Perception 19
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Perception 20
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Eyes as Sensors

• The human eye contains cells that sense light	

• Rods	


• No color (sort of)	

• Spread over the retina	

• More sensitive	


• Cones	

• Three types of cones	

• Each sensitive to different frequency distribution	

• Concentrated in fovea (center of the retina)	

• Less sensitive

Image from Stephen Chenney
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Cones
• Each type of cone responds to different range of 

frequencies/wavelengths	

• Long, medium, short	


• Also called by color	

• Red, green, blue	

• Misleading:

“Red” does not 
mean your red 
cones are firing...

Normalized sensitivity curves
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Cones

• You can see that “red” and “green” respond to more more 
than just red and green...

Images from David Forsyth
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Rods vs Cones
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Eyes as Sensors
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Monochromatic 

scotopic vision 

(low light levels) 

Chromatic 

photopic vision 

(high light levels) 

25

���26

Cones
• Response of a cone is given by a convolution integral :

L =

Z
�(�)L(�)d�

M =

Z
�(�)M(�)d�

S =

Z
�(�)S(�)d�

continuous version of a dot product
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Trichromaticity

Eye records color by 3 measurements	

We can “fool” it with combination of 3 signals	

!

So display devices (monitors, printers, etc.) can generate 
perceivable colors as mix of 3 primaries	


28
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Cone Responses are Linear
•Response to stimulus       is	

•Response to stimulus       is  	

•Then response to                 is 	

!

•Response to         is  

���29

�1 (L1,M1, S1)

(L2,M2, S2)�2

�1 + �2 (L1 + L2,M1 +M2, S1 + S2)

n�1 (nL1, nM2, nS1)
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Cones and Metamers
Cone response is an integral	

!

•  
Metamers: Different light input                      produce  
      same              cone response	


• Different spectra look the same	

• Useful for measuring color

L =

Z
�(�)L(�)d� M =

Z
�(�)M(�)d� S =

Z
�(�)S(�)d�

�1(�),�2(�)
L,M, S

30
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Additive Mixing

•Given three primaries we agree on	

•Match generic  input light with	

•Negative not realizable, but can add primary to test light	

•Color now described by 	

!

•Example: computer monitor [RGB]

α, β, γ

p1, p2, p3

� = �p1 + ⇥p2 + ⇤p3

31
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Additive Color Matching

!

!

Show test light spectrum on left	

Mix “primaries” on right until they match	

The primaries need not be RGB

32
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Experiment 1
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Slide from Durand 
and Freeman 06

33

Experiment 1
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p1     p2      p3  

Slide from Durand 
and Freeman 06
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Experiment 1
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p1     p2      p3  

Slide from Durand 
and Freeman 06

35

Experiment 1
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p1     p2      p3  

The primary color 
amounts needed 
for a match 

p1     p2      p3  

The primary color 
amounts needed 
for a match 

Slide from Durand 
and Freeman 06
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Experiment 2
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Slide from Durand 
and Freeman 06
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Experiment 2
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p1     p2      p3  

Slide from Durand 
and Freeman 06
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Experiment 2
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p1     p2      p3  

Slide from Durand 
and Freeman 06
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Experiment 2
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p1     p2      p3  p1     p2      p3  

We say a 
“negative” 
amount of p2 
was needed to 
make the match, 
because we 
added it to the 
test color’s side. 

The primary color 
amounts needed 
for a match: 

p1     p2      p3  

Slide from Durand 
and Freeman 06
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Color Matching Functions

r̄(�)

ḡ(�)

b̄(�)

Input wavelengths are CIE 1931 monochromatic primaries

41

� =

0

B@
�(�1)

...
�(�N )

1

CA

Using Color Matching Functions
•For a monochromatic light of wavelength  
we know the amount of each primary  
necessary to match it:	

!

•Given a new light input signal  	

!

!

!

•Compute the primaries necessary to match it	


���42

�i

r̄(�i), ḡ(�i), b̄(�i)

42
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Using Color Matching Functions
•Given color matching functions in matrix form and new light	

!

!

!

!

!

!

•amount of each primary necessary to match is given by 	


���43

C =

0

@
r̄(�1) . . . r̄(�N )
ḡ(�1) . . . ḡ(�N )
b̄(�1) . . . b̄(�N )

1

A

C�

� =

0

B@
�(�1)

...
�(�N )

1

CA

r̄(�)

ḡ(�)

b̄(�)
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CIE XYZ
Imaginary set of color primaries with positive values, X, Y, Z	

!

!

44
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Rescaled XYZ to xyz
Rescale X, Y, and Z to remove luminance, leaving chromaticity:	

!

!

!

!

Because the sum of the chromaticity values x, y, and z is always 
1.0, a plot of any two of them loses no information	

!

Such a plot is a chromaticity diagram	

!

x = X / ( X+Y+Z )	

y = Y / ( X+Y+Z )	

z = Z / ( X+Y+Z )	

!
x+y+z = 1

45

CIE Chromaticity Diagram

���46

Pure (saturated) spectral colors 

around the edge of the plot 

Less pure (desaturated) colors 

in the interior of the plot 

White at the centroid of 

the plot (1/3, 1/3) 
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Gamut

•Gamut is the chromaticities generated by a set of primaries	

•Because everything we’ve done is linear, interpolation 
between chromaticities on a chromaticity plot is also linear	

•Thus the gamut is the convex hull of the primary 
chromaticities	

!

•What is the gamut of the CIE 1931 primaries?	


���47
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CIE 1931 RGB Gamut
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R = 700 nm 

G = 546 nm 

B = 438 nm 
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Other Gamuts  (LCDs and NTSC)

���49

49

•Given three primaries we agree on	

•Make generic color with	

•Max limited by 	

•Color now described by 	

!

•Example: ink [CMYK]

���50

Subtractive Mixing

α, β, γ

W

Why 4th ink for black?

p1, p2, p3

� = W � (�p1 + ⇥p2 + ⇤p3)

50
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Additive & Subtractive Primaries
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Additive & Subtractive Primaries
•Incorrect to say “the additive primaries are red, green, and 
blue” 	


• Any set of three non-collinear primaries yields a gamut	

• Primaries that appear red, green, and blue are a good choice, but not the 

only choice	

• Are additional (non-collinear) primaries always better?	


•Similarly saying “the subtractive primaries are magenta, cyan, 
and yellow” is also incorrect, for the same reasons	


• Subtractive primaries must collectively block the entire visible spectrum, 
but many sets of blockers that do so are acceptable “primaries”	


• The use of black ink (the K in CMYK) is a good example	

• Modern ink-jet printers often have 6 or more ink colors	


���52
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Color Spaces
RGB color cube 	

• Does not correspond very well to 

perception (e.g. distance between 
two points has little meaning)	


!
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Color Spaces
HSV color cone

Lightness 

Hue 

Colorfulness 
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Color Spaces
RGB color cube	

HSV color cone	


CIE (x,y)

MacAdam Ellipses (10x)	

Colors in ellipses indistinguishable from center.
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Color Spaces
RGB color cube	

HSV color cone	


CIE (x,y)	


CIE (u,v)

Scaled to be closer to circles.
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Color Spaces
RGB color cube	

HSV color cone	


CIE (x,y)	


CIE (u,v)	

CMYK	

Many others...
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Monitor Intensity and Gamma	

•Monitors convert pixel value into intensity level	


• 0.0 maps to zero intensity = black (well not quite)	

• 1.0 maps to full intensity = white	

!

•Monitors are not linear	

• 0.5 does not map to “halfway” gray, (e.g. 0.5 might map to 0.217)	

• Nonlinearity characterized by exponential function  

  
where   = displayed intensity and    = pixel value (between 0 and 1)	


• For many monitors     is near 2 (often between 1.8 and 2.2)

���58

I = a�

I a
�

58
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Determining Gamma
•Suppose I know displayed intensity of a patch	

!

•Let viewer adjust pixel value    of nearby patch until match	

!

!

!

!

!

!

•How do we make a patch of known intensity?
���59

I = a�

I = 0.5

0.5 = a�

a

� =
ln 0.5

ln a

Patch of known 

I = 0.5

Viewer adjusts pixel	

values     until this  

patch visually matches
a

59

Determining Gamma

http://www.cs.cornell.edu/Courses/cs4620/2008fa/homeworks/gamma.htm

���60

60
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Dynamic Range
• Max/min values also limited on devices	


• “blackest black” 	

• “brightest white”

Jack Tumblin

61

Fake High Dynamic Range

���62

62
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Tone Mapping

Kirk and O’Brien 2011
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Rods Contribute to Color

OR/G=M-L + fR/G (L,M,R)
OB/Y=S-(L+M) + fB/Y (L,M,S,R)
OL   =L+M + fL (L,M,R)

OL

OB/Y

OR/G

L

M

S

R

64

02-Color.key - January 26, 2014



���65

Color Phenomena

• Light sources seldom shine directly in eye	

• Light follows some transport path, i.e.:	


• Source	

• Air	

• Object surface	

• Air	

• Eye	


• Color effected by interactions

65
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Reflection

• Light strikes object	

• Some frequencies reflect	

• Some adsorbed	

• Reflected spectrum is light times 

surface	

• Recall metamers...

Unknown?

66
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Transmission

• Light strikes object	

• Some frequencies pass	

• Some adsorbed (or reflected)

Unknown?
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Scattering

• Interactions with small particles in 
medium	


• Long wavelengths ignore	

• Short ones scatter

Unknown?

68
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Interference

• Wave behavior of light	

• Cancelation	

• Reinforcement	


• Wavelength dependent

Unknown?
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Iridescence

• Interaction of light with	

• Small structures	

• Thin transparent surfaces

Unknown?

70

02-Color.key - January 26, 2014



���71

Iridescence 71
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Iridescence 72

02-Color.key - January 26, 2014



���73

Fluorescence / Phosphorescence

• Photon come in, knocks up electron	

• Electron drops and emits photon at other frequency	

• May be some latency	

!

• Radio active decay can also emit visible photons

73

���74

Fluorescence / Phosphorescence 74
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Black Body Radiation

• Hot objects radiate energy	

• Frequency is temperature dependent	

• Moderately hot objects get into visible range	

• Spectral distribution is given by	


• Leads to notion of “color temperature”

€ 

E λ( )∝ 1
λ5
$ 
% 

& 
' 

1
exp hc kλT( )−1
$ 

% 
) 

& 

' 
* 
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Black Body Radiation

HyperPhysics

76
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