CS- I 84: Computer Graphics

Lecture \#22: Rigid Body Dynamics

Prof. James O'Brien
University of California, Berkeley
van1.522.1.

Announcement

- Final Project Poster Session
- Wednesday May Ith, I I:00am-2:00 pm
- Poster stands and tables provided
- Laptop videos or demos are highly recommended
- Limited AC outlets
- Final project reports
- Hardcopy due to me by end of Final Exam.
- No time for late submission!
- Final exam
- Tuesday, May I4th, 3:00-6:00pm
- I 05 Stanley Hall

| | Today |
| :--- | :--- | :--- |
| | |
| • Rigid-body dynamics
 Articulated systems | \square |

A Rigid Body

- A solid object that does not deform
- Consists of infinite number of infinitesimal mass points...
- ...that share a single RB transformation
- Rotation + Translation (no shear or scale)

$$
\boldsymbol{x}^{W}=\boldsymbol{R} \cdot \boldsymbol{x}^{L}+\boldsymbol{t}
$$

- Rotation and translation vary over time
- Limit of deformable object as $k_{S} \rightarrow \infty$

\square
\square
\square
\square

[^0]	A Rigid Body

Rotational Motion

Sunday, April 28, 13

Rotational Motion

$H=\frac{\partial E}{\partial \omega} \quad H \underset{\substack{\text { momertum } \\(\text { wor } h / t)}}{ }(\text { anguler })$	Angular momentum
$H_{p}=\frac{\partial E}{\partial \omega_{p}}$	Similar to linear momentum
$=\int_{a} \rho^{1 / 2}\left(\varepsilon_{\text {jij }} \delta_{j p} x_{k} \varepsilon_{i d b} \omega_{n} x_{b}+\varepsilon_{j n} \omega_{j} x_{n} \varepsilon_{i b b} \delta_{p a} x_{b}\right) d u$ $=\int_{a} e^{1 / 2}\left(\varepsilon_{i p n} x_{n} \varepsilon_{i n b} \omega_{c} K_{b}+\varepsilon_{i ; n} \omega_{j} x_{n} \varepsilon_{i f b} x_{b}\right) d \alpha$	Can be derived from rotational energy
$\begin{aligned} & =\int_{\Omega e} \times \times(\omega \times X) d u \\ & 1=\int_{n} e X \times V d u \end{aligned}$	$\boldsymbol{H}=\int_{\Omega} \rho \boldsymbol{x} \times \dot{\boldsymbol{x}} d u$
$\begin{aligned} & =\omega_{a} \int_{\Omega} e \varepsilon_{\text {iph }} x_{k} \varepsilon_{i a b} x_{b} d u \\ & =\omega_{a} \int_{\Omega} e\left(\delta_{p a} \delta_{k b}-\delta_{p b} \delta_{m k}\right) x_{k} x_{b} d u \end{aligned}$	$\boldsymbol{H}=\int_{\Omega} \rho \boldsymbol{x} \times(\omega \times \boldsymbol{x}) d u$
$\text { * } \quad H_{p}=I_{a p}^{\text {人 }} \omega_{a} \text { Inote Tremir }$	$\boldsymbol{H}=\left(\int_{\Omega} \cdots d u\right) \boldsymbol{\omega}$
"Inertia Tensor" not identity matrix...	$\boldsymbol{H}=\boldsymbol{I} \boldsymbol{\omega}$

Inertia Tensor

$$
\mathbf{I}=\int_{\Omega} \rho\left[\begin{array}{ccc}
y^{2}+z^{2} & -x y & -x z \\
-x y & z^{2}+x^{2} & -y z \\
-x z & -y z & x^{2}+y^{2}
\end{array}\right] \mathrm{d} u
$$

See example for simple shapes at
http://scienceworld.wolfram.com/physics/Momentoflnertia.html
Can also be computed from polygon models by transforming
volume integral to a surface one.
See paper/code by Brian Mirtich.

Sunday, April 28, 13

Rotational Motion

Conservation or momentum:

$$
\begin{array}{ll}
& \begin{array}{l}
\boldsymbol{H}^{W}=I^{W} \omega^{W} \\
\boldsymbol{H}^{W}=\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}
\end{array} \\
\dot{\boldsymbol{H}}^{W}=\dot{\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \dot{\boldsymbol{R}^{2}} \boldsymbol{\omega}^{W}+\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top} \boldsymbol{\alpha}^{W}} \\
\dot{\boldsymbol{R}=\boldsymbol{\omega} \times \boldsymbol{R}} \quad & \boldsymbol{\alpha}^{W}=\left(\boldsymbol{R} \boldsymbol{I}^{L} \boldsymbol{R}^{\top}\right)^{-1}\left(-\boldsymbol{\omega}^{W} \times \boldsymbol{H}^{W}\right)
\end{array}
$$

$\dot{\boldsymbol{H}}^{W}=0$

In other words, things wobble when they rotate.
Rotational Motion

Sunday, April 28, 13

Couples
• A force / torque pair is a couple
• Also a wrench
- Many couples are equivalent

Constraints

- Simples method is to use spring attachments
- Basically a penalty method

- Spring strength required to get good results may be unreasonably high - There are ways to cheat in some contexts...

\square

[^1]
Constraints

- Articulation constraints
- Spring trick is an example of a full coordinate method
- Better constraint methods exist
- Reduced coordinate methods use DOFs in kinematic skeleton for simulation
- Much more complex to explain
- Collisions
- Penalty methods can also be used for collisions
- Again, better constraint methods exist
Sugoested Reading

Sunday, April 28, 13

[^0]: Sunday, April 28, 13

[^1]: Sunday, April 28, 13

