CS-I 84: Computer Graphics

Lecture \#|8: Forward and Inverse Kinematics

Prof. James O'Brien University of California, Berkeley
volusitic

Today

Forward kinematics

- Inverse kinematics
- Pin joints
- Ball joints
- Prismatic joints \qquad
Monday, April 15, 13

Fomward Kinematics	
- Root body - Position set by "globak'transformation - Root joint - Position - Rotation - Other bodies relative to root - Inboard toward the root - Outboard away from root	

Monday, April 15, 13

	Forward Kinematics
- A joint	
\cdot Joints inboard body	
\cdot Joints outboard body	

\square
\square
\square

Monday, April 15, 13

| Fonward Kinematics |
| :--- | :--- |
| - A body |
| • Body's inboard joint |
| • Body's outboard joint |
| - May have several outboard joints |
| • Body's sarent |
| • Body's child |
| • May have several children |

Monday, April 15, 13

| Forward Kinematics |
| :--- | :--- |
| • Pin Joints |
| • Translate inboard joint to local origin |
| • Apply rotation about axis |
| - Translate origin to location of joint on outboard body |

Monday, April 15, 13

Composite transformations up the hierarchy

Monday, April 15, 13
Forward Kinematics
Forward Kinematics

Monday, April 15, 13

Forward Kinematics

- Composite transformations up the hierarchy
ahy
Forward Kinematics

Monday, April 15, 13

Monday, April 15, 13

	Inverse Kinematics
- Why is the problem hard?	
\cdot	Solutions may not always exist

Monday, April 15, 13

| | Inverse Kinematics |
| :--- | :--- | :--- |
| Recall simple two segment arm: | |
| \square | \square |

| Inverse Kinematics |
| :--- | :--- |
| We can write of the derivatives |
| $\frac{\partial p_{x}}{\partial \theta_{1}}$ $=l_{1} \cos \left(\theta_{1}\right)+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)$
 $\frac{\partial p_{z}}{\partial \theta_{2}}$ $=$
 $\frac{\partial p_{x}}{\partial \theta_{2}}$ $=$
 l_{1} $-l_{2} \sin \left(\theta_{1}+\theta_{2}\right)$
 $+l_{2} \cos \left(\theta_{1}+\theta_{2}\right)$ |

Monday, April 15, 13

Inverse Kinematics	

	Inverse Kinematics
The Jacobian (of p w.r.t. θ)	
$J_{i j}=\frac{\partial p_{i}}{\partial \theta_{j}}$	
Example for two segment arm	
$J=\left[\begin{array}{l}\frac{\partial p_{z}}{\partial \theta_{1}} \frac{\partial p_{z}}{\partial \theta_{2}} \\ \left.\frac{\partial p_{x}}{\partial \theta_{1}} \frac{\partial p_{x}}{\partial \theta_{2}}\right]\end{array}\right]$	
	\square

Monday, April 15, 13

	Inverse Kinematics
The Jacobian (of \boldsymbol{p} w.r.t. θ)	
$J=\left[\begin{array}{l}\frac{\partial p_{z}}{\partial \theta_{1}} \frac{\partial p_{z}}{\partial \theta_{2}} \\ \frac{\partial p_{x}}{\partial \theta_{1}} \frac{\partial p_{x}}{\partial \theta_{2}}\end{array}\right]$	
$\frac{\partial \boldsymbol{p}}{\partial \theta_{*}}=J \cdot\left[\begin{array}{l}\frac{\partial \theta_{1}}{\partial \theta_{*}} \\ \frac{\partial \theta_{2}}{\partial \theta_{*}}\end{array}\right]=J \cdot\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right]$	

	Inverse Kinematics
$\boldsymbol{c}=\left[\begin{array}{l}c_{1} \\ c_{2}\end{array}\right] \quad \mathrm{d} \boldsymbol{p}=\left[\begin{array}{l}\mathrm{d} p_{z} \\ \mathrm{~d} p_{x}\end{array}\right]$	
$\mathrm{d} \boldsymbol{p}=J \cdot \boldsymbol{c}$	
$\boldsymbol{c}=J^{-1} \cdot \mathrm{~d} \boldsymbol{p}$	

Monday, April 15, 13

Monday, April 15, 13

Inverse Kinematics

Jacobian is not always invertible

- Use pseudo inverse (SVD)

Computing a linear approximation

- End effector only locally moves linearly
- So iterate (choosing proper step size) and update Jacobian after each step
- Choosing step size requires line search at each step
- Choose some step size (say 5 degrees) and compute how to update joint parameters
- Calculate distance of end effector from goal
- If distance decreased take step
- Is distance did not decrease set parameters to be half the current change and try again \qquad

Monday, April 15, 13

	Inverse Kinematics
• Some issues	
• How to pick from multiple solutions?	
• Robustness when no solutions	
• Contradictory solutions	
• Smooth interpolation	
• Numerical evaluation of Jacobian	

Monday, April 15, 13

Monday, April 15, 13

Monday, April 15, 13

Monday, April 15, 13

	Suggested Reading	
		\square
- Advanced Animation and Rendering Techniques by Watt and Watt •Chapters 15 and 16	\square	

