CS-184: Computer Graphics

Lecture #12: Curves and Surfaces

Prof. James O'Brien
University of California, Berkeley

Today

* General curve and surface representations

* Splines and other polynomial bases

Tuesday, March 5, 13

Geometry Representations

* Constructive Solid Geometry (CSG)

* Parametric
* Polygons

» Subdivision surfaces
* Implicit Surfaces
* Point-based Surface

* Not always clear distinctions
+ i.e. CSG done with implicits

Geometry Representations

Object made by CSG
Converted to

polygons

Tuesday, March 5, 13

Geometry Representations

Object made by CSG
Converted to polygons
Converted to implicit surface

B ==

Geometry Representations

CSG on implicit
surfaces

Tuesday, March 5, 13

Geometry Representations

Point-based surface
descriptions

Ohtake, et al, SIGGRAPH 2003

Subdivision surface
(different levels of
refinement)

Images from Subdivision.org 8

Tuesday, March 5, 13

Geometry Representations

+ Ease of use for design

+ Ease/speed for rendering
+ Simplicity

+ Smoothness

» Collision detection

+ Suitability for simulation

* many others...

* Various strengths and weaknesses

+ Flexibility (in more than one sense)

Parametric Representations

Curves: x=x(u)

Surfaces: x = x(u,v)

Volumes: = = x(u, v, w)
x =x(u)

and so on...

x e R

x e R

xR

ue R

u,v € RN
u € R

u, v, w € RN
ue RS

Note: a vector function is really n scalar functions

Tuesday, March 5, 13

10

Parametric Rep. Non-unique

* Same curve/surface may have multiple formulae

z(u) = [u, u] z(u) = [uS.,u3]

Simple Differential Geometry

* Tangent to curve

ox
t(u) = u

u

* Tangents to surface

e
T ou

ty(u,v) = O

tu(u,v) rm
’ u,v v u,v

* Normal of surface

bty Xty
([t % to]

« Also: curvature, curve normals, curve bi-normal, others...
* Degeneracies: 9z/ou=0 OF t, x t, =0

Tuesday, March 5, 13

11

12

Tangent Space

* The tangent space at a point on a surface is the vector
space spanned by

0x(u) 0x(u)

ou ov
+ Definition assumes that these directional derivatives are linearly
independent.

+ Tangent space of surface may exist even if the

parameterization is bad

* For surface the space is a plane

+ Generalized to higher dimension manifolds

Non Orthogonal Tangents

gef0.1] pel-1.1]

cos(627) cos(¢pi/2) cos(2m0) cos (47 (3(1 — |@]) cos(670) + ¢))
sin(#27) cos(¢pm/2) cos (37 (%(1 — |9]) cos(6m0)¢ + ¢)) sin(270)
sin(¢m/2) sin (37 (1(1 — |¢]) cos(670)¢ + ¢))

Tuesday, March 5, 13

13

14

Discretization

+ Arbitrary curves have an uncountable number of parameters

;
| AUM\
BA%

Il Il
0 1 2

i.e. specify function value at all
points on real number line E

Discretization

* Arbitrary curves have an uncountable number of parameters

* Pick complete set of basis functions o(u) = icmi(w

+ Polynomials, Fourier series, etc. =0

* Truncate set at some reasonable point

z(u) = Z cigi(u) = Z G u'

3
=0

* Function represented by the vector (list) of ¢

* The ¢ may themselves be vectors
z(u) = Z c;oi(u)

3
=0

Tuesday, March 5, 13

15

16

Polynomial Basis

* Power Basis

d
x(u) = Z ul

i=0

C = [co, 1, Ca - -+, Cdl

2(u) =C- P! Pl = [l,u,uz, .. ,'ud]

The elements of p? are linearly independant
i.e. no good approximation
ub % ;al u'
Skipping something would lead to bad results... odd
stiffness

Specifying a Curve

Given desired values (constraints) how do we
determine
the coefficients for cubic power basis?

A

tu(up)

For now, assume
ug=0 wup =1

u() U 1

Tuesday, March 5, 13

17

18

Specifying a Curve

Given desired values (constraints) how do we
determine
the coefficients for cubic power basis?

A

tu(ug)

: x(uq)

Specifying a Curve

Given desired values (constraints) how do we
determine
the coefficients for cubic power basis?

A

x(1 0 0 0 |

tu(up)

T 1 11 1) |q

) |01 0 0 |oo

Tuesday, March 5, 13

19

20

Specifying a Curve

Given desired values (constraints) how do we

determine

the coefficients for cubic power basis?

C:BH'p

A

B,=B"! -

tu(ug)

x(uq)

Specifying a Curve

Given desired values (constraints) how do we

determine

the coefficients for cubic power basis

C:ﬁH'p

x(u) = P3.c= 7735H

p

/

1+0u73u2+2u3
0+0u+3u272u3

04 lu — 2u? + 1u3

2 3

04 0u — 1u” + 1u

-—

(uy)

Tuesday, March 5, 13

21

22

Specifying a Curve

Given desired values (constraints) how do we
determine
the coefficients for cubic power basis!

C :/BHp
1+0u—3u2+2u3

a(uy)

0+ 0w+ 3u? — 2u°

2 3 0 1

0+ 1u—2u®+ 1u

2 3

04+ 0u — 1u* + lu

z(u) = fﬁpz‘bi(u)
=0

1

Hermite basis functions

Specifying a Curve

Given desired values (constraints) how do we determine
the coefficients for cubic power basis?

2

14 Ou — 3u2 + 2u>,

0+ Ou + 3142 — 2143-

2 3

+ T1u®;

0+ 1u—2u

2 3

0+ 0u — 1u” + 1u

3
r(u) = 3 pibi(u)
Hermite basis functions =01 .

Tuesday, March 5, 13

23

24

Hermite Basis

* Specify curve by
+ Endpoint values
+ Endpoint tangents (derivatives)

* Parameter interval is arbitrary (most times)
* Don't need to recompute basis functions

* These are cubic Hermite

+ Could do construction for any odd degree
* (d — 1)/2derivatives at end points

Cubic Bézier

* Similar to Hermite, but specify tangents indirectly

Zo = Po
1 =P3
xy = 3(p1 — po)
v = 3(p3 — p2)

Note: all the control points
are points in space, no tangents.

Tuesday, March 5, 13

25

26

Cubic Bézier

* Similar to Hermite, but specify tangents indirectly

100 0 00 0 o
111 1| |00 01 w5,)
010 0[°|-330 0]|P 11923(1’}_{’0)
01 2 3 0 0 -33 1=\ = P2
1 0 0 0 N
e 33 0 0
T3 =6 3 o |P
-1 3 -3 1 .
A} R
c=0,p
. ,
Cubic Bézier
Bézier basis functions
1 0 0 0
- 33 0 0
C=Bp =y Loy g P
1 3 -3 1 .
x(u) = P3.c .
1—3u+3u? —1u 0s)
IE(U) o O+3U_6u2 +3u3 0.4 — //
0 + OU + 3'LL2 - 3u3 p n.2 i
0+ Ou + Ou? + 1u3 - — \
i) 04 06 08 1.0

Tuesday, March 5, 13

27

28

Changing Bases

* Power basis, Hermite, and Bézier all are still just cubic

polynomials
* The three basis sets all span the same space
* Like different axes in

+ Changing basis X R

c=0,p: _
P pZ:leﬁHpH

C:BHPH

Useful Properties of a Basis

« Convex Hull

+ All points on curve inside convex hull of control points

+ Bézier basis has convex hull property

Tuesday, March 5, 13

29

30

Useful Properties of a Basis

* Invariance under class of transforms
* Transforming curve is same as transforming control points
+ Bézier basis invariant for affine transforms
+ Bézier basis NOT invariant for perspective transforms
* NURBS are though...
x(u) =X p;bi(u) & Ta(u) = X (Tp;)bi(u)
2

i

Useful Properties of a Basis

* Local support
+ Changing one control point has limited impact on entire curve
+ Nice subdivision rules
+ Orthogonality (f, bi(w)b;(u)du = &;)
+ Fast evaluation scheme

* Interpolation -vs- approximation

Tuesday, March 5, 13

31

32

DeCasteljau Evaluation

* A geometric evaluation scheme for Bézier

o u =0

Notice tangent
line

DeCasteljau Evaluation

Blue line is always tangent
to curve.

oP, oP,

Po t=.72 oP,

From Wikipedia

Tuesday, March 5, 13

33

| 34

Adaptive Tessellation

* Midpoint test subdivision Recall...

* Possible problem YA N —

+ Simple solution if curve basis has convex hull property

If curve inside convex hull
and the convex hull is S e
nearly flat: curve is nearly ' ‘
flat and can be drawn as
straight line

Better: draw convex hull

Works for Bézier because the ends are
interpolated

Bézier Subdivision

* Form control polygon for half of curve by evaluating at
u=0.5

Repeated subdivision
makes smaller/flatter
segments

Also works for surfaces...

We'll extend this idea
later on...

Tuesday, March 5, 13

35

36

Joining

Aeb=b
cleb-a=c—b

1 b—a c—b
G & =
Io—all [lc—bll

If you change a, b, or ¢ you must change the others

But if you change a, b, or ¢ you do not have to change
beyond those three. *LOCAL SUPPORT*

"Hump” Functions

+ Constraints at joining can be built in to make new basis

D N
/\\//\

Tuesday, March 5, 13

37

38

Tensor-Product Surfaces

* Surface is a curve swept through space

* Replace control points of curve with other curves

x(u,v) =; p; bi(u)
i qi(v) bi(u) qi(v) =%; pji bj(v)

w(u,v) = X pbi(w)bi(v) biju,v) = biw)b;(v)

r(u,v) = X pijbij(u, v)
ij

Tensor-Product Surfaces

Tuesday, March 5, 13

39

40

Hermite Surface Bases

R Y
..........:..:..&:: S
0t et ety
SRRBRALIN, o
BT ~
i
A LTRTy
s
it &%@&; s\ﬁ%ﬁ
9

£

Plus symmetries...

=

Hermite Surface Hump Functions

N
Y

L7
SRRRAEHNY

2
JNQ
o

\\
ékr..
ot
R

Plus symmetries...

42

Tuesday, March 5, 13

Bézier Surface Patch

Bezier surface and 4 x 4 array of control points

Adaptive Tessellation

+ Given surface patch

* If close to flat: draw it

+ Else subdivide 4 ways

Tuesday, March 5, 13

. 43

44

Adaptive Tessellation

* Avoid cracking

Passes flatness test Fails flatness test

Adaptive Tessellation

* Avoid cracking

Crack in the surface
Cracks may be okay in some contexts...

Tuesday, March 5, 13

45

46

Adaptive Tessellation

* Avoid cracking

Adaptive Tessellation

* Avoid cracking

Test interior and boundary of patch
Split boundary based on boundary
test

Table of polygon patterns

May wish to avoid “'slivers”

Tuesday, March 5, 13

47

48

Adaptive Tessellation

* Triangle Based Method (no cracks)

Uy Uus Uy Uus
® ® ®
' ®
1 %) Ui 1753
Adaptive Tessellation
* Triangle Based Method (no cracks)
U3
X3
/A U
X1 ‘
X2

Tuesday, March 5, 13

49

50

Adaptive Tessellation

* Triangle Based Method (no cracks)

A

u1+u2 /2

hu

(x14+x2)/

Adaptive Tessellation

* Triangle Based Method (no cracks)

Uus
X3

o~
~
[S=Y

7%

X1 ‘
X2

1B((1 4 12)/2) — (x1 +x2) /2] < T 2

Tuesday, March 5, 13

51

52

Adaptive Tessellation

* Triangle Based Method (no cracks)

Center test tends to generate slivers.
Often better to leave it out.

Adaptive Tessellation

Without center test With center test

Yiding Jia, CS184 S08

54

Tuesday, March 5, 13

Adaptive Tessellation

Second row shows typical error of swapping tests.

Yiding Jia, CS184 S08 — | broke his code to make this example.

! Y
\ = N —5
|\ v)
> I / U 7
» e \._,/ ¢
' & b &
A - N =
\, / "// \<,/ V4
S 7 s
NS *//

Adaptive Tessellation

Visible artifacts from cracks.

Apollo Ellis, CS184 S08

56

Tuesday, March 5, 13

Bezier Surfaces. Smooth Operators.

Bicubic Bezier Patch

Continuously Moved and Deformed Bezier Curve

given the control points of a bezier curve
and a parametric value, return the curve
point and derivative
bezcurveinterp(curve, u)
first, split each of the three segments
to form two new ones AB and BC
A = curve[0] * (1.0-u) + curve[l] * u
B = curve[l] * (1.0-u) + curve[2] * u
€ = curve[2] * (1.0-u) + curve[3] * u

now, split AB and BC to form a new segment DE
D=A* (1.0-u) +B*u

E =B+ (1.0-u) +C*u

finally, pick the right point on DE,

this is the point on the curve

P=D* (1.0-u) +E *u

compute derivative also
dedu = 3 * (E - D)

return p, dpdu

given a control patch and (u,v) values, find
the surface point and normal
bezpatchinterp(patch, u, v)
build control points for a Bezier curve in v
veurve[0] = bezcurveinterp(patch[0][0:3], u)

veurve[1] = bezcurveinterp(patch[1][0:3], u)
veurve[2] = bezcurveinterp(patch[2][0:3], u)
veurve[3] = bezcurveinterp(patch[3][0:3], u)

build control points for a Bezier curve in u

ucurve[0] = bezcurveinterp(patch(0:3](0], v)
ucurve[1] = bezcurveinterp(patch(0:3](1], v)
ucurve[2] = bezcurveinterp(patch[0:3](2], v)
ucurve[3] = bezcurveinterp(patch[0:31(3], v)

evaluate surface and derivative for u and v
p, dPdv = bezcurveinterp(veurve, v)
P, dPdu = bezcurveinterp(ucurve, u)

take cross product of partials to find normal
cross(dpdu, dpdv)
n / length(n)

return p, n

Move control points

leading to a total of 16 control points for the cubic case.

given
subdividepatch(patch, step)

a patch, perform uniform subdivision

compute how many subdivisions there
are for this step size
nundiv = ((1 + epsilon) / step)

for each parametric value of u
for (iu = 0 to numdis
u = iu * step

for (iv =
v = iv * step

for each parametric value of v
0 to nundiv)

evaluate surface
b, n = bezpatchinterp(patch, u, v)
savesurfacepointandnormal (p,n)

Split?
e3 e2 el
0 0 0 output as is
0 0 1
0 1 0
1.0 0 el e3
e2

Pr>BD>BDP

Tuesday, March 5, 13

57

