CS-184: Computer Graphics

Lecture #7: BSP and AABB Trees

Brandon Wang and Prof. James O'Brien University of California, Berkeley

V2013-S-07-1.0

-

Announcements

Assignment 2: Soon...

,

BSP-Trees

- Binary Space Partition Trees
 - Split space along planes
 - Allows fast queries of some spatial relations
- Simple construction algorithm
- Select a plane as sub-tree root
- Everything on one side to one child
- Everything on the other side to other child
- Use random polygon for splitting plane

3

BSP-Trees a,b,c,d,e,f,g

Sunday, February 24, 13

BSP-Trees $d + a f + c_2 + c_3 + c_4 + c_5 + c$

9

BSP-Trees

- Visibility Traversal
- Variation of in-order-traversal
 - Child one
 - Sub-tree root
 - Child two
- Select "child one" based on location of viewpoint
 - Child one on same side of sub-tree root as viewpoint

Your Ray Tracer

```
RayTrace(image)
  For ray in camera
    image[pixel] = Trace(ray)

Trace(ray)

  t_hit = infinity
  For object in scene
    t_hit = min(object.intersect(ray), t_hit)
    shade at t_hit
    possible calls to Trace(new_ray)
```

13

Your Ray Tracer

```
RayTrace(image)
  For ray in camera
    image[pixel] = Trace(ray)

Trace(ray)

  t_hit = infinity
  For object in scene
    t_hit = min(object.intersect(ray), t_hit)
    shade at t_hit
    possible calls to Trace(new_ray)
```

Your Ray Tracer

```
RayTrace(image)
  For ray in camera
    image[pixel] = Trace(ray)

Trace(ray)

  t_hit = infinity
  For object in scene
    t_hit = min(object.intersect(ray), t_hit)
    shade at t_hit
    possible calls to Trace(new_ray)
```

15

Bounding Shapes

- Bounding shape completely encloses associated object
- Rays cannot hit object w/o intersecting bounding shape
- Two objects cannot collide if shapes don't overlap
- Simplicity -vs- tightness

Axis-Aligned Bounding Boxes

17

18

Axis-Aligned Bounding Boxes

Axis-Aligned Bounding Boxes

19

Tightness Untransformed Method (1) Method (2)

Sunday, February 24, 13

Sunday, February 24, 13

Sunday, February 24, 13

Sunday, February 24, 13

Ray Test Against Bound Tree

- RayHitSubTree(&ray, node)
- If RayHitsBB(ray, node.xfBB)
 - ixfRay = Inverse(node.xf) *ray
 - If RayHitsBB (ixfRay, node.BB)
 - If node is group
 - Foreach child in node.children
 - RayHitSubTree(ixfRay,child)
 - else // node not group
 - RayHitGeometry(ixfRay, node.geom)
 - ray.collisionInfo.update(ixfRay)

Building the tree

- Sort (or QuickSelect) and split on one axis
- Repeat for the other axis
 - X,Y,Z

Other Schemes • Uniform Grid/Octrees • Spatial Hierarchies • Etc

37

