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Today

• Raytracing
• Shadows and direct lighting
• Reflection and refraction
• Antialiasing, motion blur, soft shadows, and depth of field

• Intersection Tests
• Ray-primitive
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Raytracing Assignment
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Light in an Environment

Lady writing a Letter with her Maid  
National Gallery of Ireland, Dublin
Johannes Vermeer, 1670
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Global Illumination Effects

PCKTWTCH
Kevin Odhner
POV-Ray
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Global Illumination Effects

A Philco 6Z4 Vacuum Tube
Steve Anger
POV-Ray
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Global Illumination Effects

Caustic Sphere
Henrik Jensen
(refraction caustic) 
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Global Illumination Effects

Caustic Ring
Henrik Jensen
(reflection caustic) 
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Global Illumination Effects

Sphere Flake
Henrik Jensen

10

Early Raytracing

Turner Whitted
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Raytracing

• Scan conversion
• 3D → 2D → Image
• Based on transforming geometry

• Raytracing
• 3D → Image
• Geometric reasoning about light rays
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Raytracing

Eye, view plane section, and scene
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Raytracing

Launch ray from eye through pixel, see what it hits
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Raytracing

Compute color and fill-in the pixel

13

14
Saturday, February 9, 13



15

Raytracing

• Basic tasks
• Build a ray
• Figure out what a ray hits
• Compute shading

16

Building Eye Rays
• Rectilinear image plane build from four points
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Building Eye Rays
• Nonlinear projections

• Non-planar projection surface
• Variable eye location
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Examples

Multiple-Center-of-Projection Images

Paul Rademacher     Gary Bishop

University of North Carolina at Chapel Hill

ABSTRACT

In image-based rendering, images acquired from a scene are
used to represent the scene itself.  A number of reference images
are required to fully represent even the simplest scene.  This leads
to a number of problems during image acquisition and subsequent
reconstruction. We present the multiple-center-of-projection

image, a single image acquired from multiple locations, which

solves many of the problems of working with multiple range
images.

This work develops and discusses multiple-center-of-
projection images, and explains their advantages over
conventional range images for image-based rendering.  The
contributions include greater flexibility during image acquisition
and improved image reconstruction due to greater connectivity
information.  We discuss the acquisition and rendering of

multiple-center-of-projection datasets, and the associated
sampling issues.  We also discuss the unique epipolar and
correspondence properties of this class of image.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image Generation –

Digitizing and scanning, Viewing algorithms; I.3.7 [Computer Graphics]:

Three-Dimensional Graphics and Realism;  I.4.10 [Image Processing]:

Scene Analysis

Keywords: image-based rendering, multiple-center-of-projection images

1 INTRODUCTION

In recent years, image-based rendering (IBR) has emerged
as a powerful alternative to geometry-based representations of
3-D scenes.  Instead of geometric primitives, the dataset in IBR is
a collection of samples along viewing rays from discrete
locations.  Image-based methods have several advantages.  They
provide an alternative to laborious, error-prone geometric

modeling.  They can produce very realistic images when acquired
from the real world, and can improve image quality when
combined with geometry (e.g., texture mapping).  Furthermore,
the rendering time for an image-based dataset is dependent on the
image sampling density, rather than the underlying spatial
complexity of the scene.  This can yield significant rendering
speedups by replacing or augmenting traditional geometric
methods [7][23][26][4].

The number and quality of viewing samples limits the
quality of images reconstructed from an image-based dataset.

Clearly, if we sample from every possible viewing position and
along every possible viewing direction (thus sampling the entire

plenoptic function [19][1]), then any view of the scene can be
reconstructed perfectly.  In practice, however, it is impossible to
store or even acquire the complete plenoptic function, and so one
must sample from a finite number of discrete viewing locations,
thereby building a set of reference images.  To synthesize an
image from a new viewpoint, one must use data from multiple

reference images.  However, combining information from
different images poses a number of difficulties that may decrease
both image quality and representation efficiency.  The multiple-

center-of-projection (MCOP) image approaches these problems
by combining samples from multiple viewpoints into a single

image, which becomes the complete dataset.  Figure 1 is an
example MCOP image.

Figure 1 Example MCOP image of an elephant

The formal definition of multiple-center-of-projection
images encompasses a wide range of camera configurations.  This

paper mainly focuses on one particular instance, based on the
photographic strip camera [9].  This is a camera with a vertical
slit directly in front of a moving strip of film (shown in Figure 2
without the lens system).  As the film slides past the slit a
continuous image-slice of the scene is acquired.  If the camera is
moved through space while the film rolls by, then different
columns along the film are acquired from different vantage points.
This allows the single image to capture continuous information

from multiple viewpoints.  The strip camera has been used
extensively, e.g., in aerial photography.  In this work’s notion of a
digital strip camera, each pixel-wide column of the image is
acquired from a different center-of-projection.  This single image
becomes the complete dataset for IBR.

Features of multiple-center-of-projection images include:

• greater connectivity information compared with

collections of standard range images, resulting in
improved rendering quality,

• greater flexibility in the acquisition of image-based

datasets, for example by sampling different portions of
the scene at different resolutions, and

• a unique internal epipolar geometry which

characterizes optical flow within a single image.



   CB #3175 Sitterson Hall,  Chapel Hill, NC, 27599-3175
   rademach@cs.unc.edu, bishop@cs.unc.edu     http://www.cs.unc.edu/~ibr

Multiple-Center-of-Projection Images
P. Rademacher and G. Bishop
SIGGRAPH 1998

17

18
Saturday, February 9, 13



19

Examples
Spherical and Cylindrical 
Projections
Ben Kreunen
From Big Ben's Panorama Tutorials
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Building Eye Rays
• Ray equation

• Through eye at 
• At pixel center at

R(t) = E+ t(P�E)

E

P

t 2 [1 . . .+∞]

t = 0
t = 1
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Shadow Rays
• Detect shadow by rays to light source

Incoming (eye) ray

Shadow ray - no shadow Shadow ray - 
shadow

Lights
Occluder

R(t) = S+ t(L�S)
t 2 [ε . . .1)
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Shadow Rays
• Test for occluder

• No occluder, shade normally ( e.g. Phong model )
• Yes occluder, skip light ( don’t skip ambient )

• Self shadowing
• Add shadow bias
• Test object ID

Self-shadowing Correct
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Reflection Rays
• Recursive shading

• Ray bounces off object
• Treat bounce rays (mostly) like eye rays
• Shade bounce ray and return color

• Shadow rays
• Recursive reflections

• Add color to shading at original point
• Specular or separate reflection coefficient

t 2 [ε . . .+∞)

n̂

R(t) = S+ tB
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Reflection Rays
• Recursion Depth

• Truncate at fixed number of bounces
• Multiplier less than J.N.D.
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Refracted Rays
• Transparent materials bend light

• Snell’s Law                    ( see clever formula in text... )ni
nt

=
sinθt
sinθi

θi
ni

I

T

nt

θt

R

sinθt > 1 Total (internal) reflection
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Refracted Rays
• Coefficient on transmitted ray depends on 

• Schlick approximation to Fresnel Equations 

• Attenuation
• Wavelength (color) dependant
• Exponential with distance

θ

kt(θi) = k0+(1� k0)(1� cosθi)5

k0 =
✓
nt�1
nt +1

◆2
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Refracted Rays

O’Brien and Hodgins, SIGGRAPH 1999
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• Boolean on/off for pixels causes problems
• Consider scan conversion algorithm:

• Compare to casting a ray through each pixel center
• Recall Nyquist Theorem 

• Sampling rate ≥ twice highest frequency

Anti-Aliasing
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Anti-Aliasing
• Desired solution of an integral over pixel
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“Distributed” Raytracing
• Send multiple rays through each pixel

• Average results together
• Jittering trades aliasing for noise

One Sample 5x5 Grid 5x5 Jittered Grid
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“Distributed” Raytracing
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“Distributed” Raytracing

• Use multiple rays for reflection and refraction
• At each bounce send out many extra rays
• Quasi-random directions
• Use BRDF (or Phong approximation) for weights

• How many rays?

1

33

34
Saturday, February 9, 13



16

256
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Soft Shadows

Umbra PenumbraPenumbra

Figure from S. Chenney
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• Distribute shadow rays over light surface

Soft Shadows

Figure from S. Chenney

All shadow rays
go through

No shadow rays
go through

Some shadow
rays go through
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• Distribute rays over time

• More when we talk about animation...

Motion Blur

Pool Balls
Tom Porter
RenderMan
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Depth of Field

Kolb, Mitchell, and Hanrahan
SIGGRAPH 1995
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Depth of Field

No DoF

Multiple images for DoF

Jittered rays for DoF

More rays

Even more rays
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Other Lens Effects

Kolb, Mitchell, and Hanrahan
SIGGRAPH 1995
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Ray -vs- Sphere Test
• Ray equation:
• Implicit equation for sphere:
• Combine:

• Quadratic equation in t

R(t) = A+ tD
|X�C|2� r2 = 0

|R(t)�C|2� r2 = 0
|A+ tD�C|2� r2 = 0

D

A

C
r
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Ray -vs- Sphere Test

Two solutions One solution Imaginary
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Ray -vs- Triangle 
• Ray equation:
• Triangle in barycentric coordinates:

• Combine:

• Solve for β, γ, and t
• 3 equations 3 unknowns
• Beware divide by near-zero
• Check ranges

R(t) = A+ tD

X(β,γ) = V1+β(V2�V1)+ γ(V3�V1)

V1+β(V2�V1)+ γ(V3�V1) = A+ tD

45

46
Saturday, February 9, 13


