CS-I 84: Computer Graphics

Lecture \#5: 3D Transformations and
Rotations

Prof. James O'Brien
University of California, Berkeley
2019.5s5 10 \qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	$3 D$ Transformations
- Generally, the extension from 2D to 3D is straightforward	
- Vectors get longer by one	
- Matrices get extra column and row	
- SvD still works the same way	
- Scale,Translation, and Shear all basically the same	
- Rotations get interesting	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

- Matrices get extra column and row \qquad
- SVD still works the same way \qquad
- Scale, Translation, and Shear all basically the same
\qquad
\qquad
\qquad

	Translations	
	$\begin{gathered} \tilde{\mathbf{A}}=\left[\begin{array}{lll} 1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1 \end{array}\right] \\ \tilde{\mathbf{A}}=\left[\begin{array}{llll} 1 & 0 & 0 & t_{x} \\ 0 & 1 & 0 & t_{y} \\ 0 & 0 & 1 & t_{z} \\ 0 & 0 & 0 & 1 \end{array}\right] \end{gathered}$	For 2D For 3D

\qquad

Scales

$$
\begin{array}{cc}
\tilde{\mathbf{A}}=\left[\begin{array}{ccc}
s_{x} & 0 & 0 \\
0 & s_{y} & 0 \\
0 & 0 & 1
\end{array}\right] & \text { For 2D } \\
\tilde{\mathbf{A}}=\left[\begin{array}{cccc}
s_{x} & 0 & 0 & 0 \\
0 & s_{y} & 0 & 0 \\
0 & 0 & s_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] & \text { For 3D }
\end{array}
$$

Shears
\(\tilde{\mathbf{A}=\left[\begin{array}{ccc}1 \& h_{x y} \& 0

h_{y x} \& 1 \& 0

0 \& 0 \& 1\end{array}\right]}\)| | |
| ---: | :--- |
| $\tilde{\mathbf{A}}=\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z x} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ | For 2D |
| Tuesday, February 5, 13 | | (Axis-aligned!)

	Shears
$\tilde{\mathbf{A}}=\left[\begin{array}{cccc}1 & h_{x y} & h_{x z} & 0 \\ h_{y x} & 1 & h_{y z} & 0 \\ h_{z x} & h_{z y} & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$	

\qquad
\qquad
\qquad

[^0]| | Rotations |
| :--- | :--- |
| | - Rotations still orthonormal |
| - $\operatorname{Det}(\mathbf{R})=1 \neq-1$ | |
| - Preserve lengths and distance to origin | |
| - 3D rotations DO NOT COMMUTE! | |
| - Right-hand rule DO NOT COMMUTE! | |
| - Unique matrices | |

\qquad
\qquad
Rotations still orthonormal \qquad
$\operatorname{Det}(\mathbf{R})=1 \neq-1$ \qquad

- Preserve lengths and distance to origin \qquad
3D rotations DO NOT COMMUTE! \qquad
- Right-hand rule DO NOT COMMUTE! \qquad
- Unique matrices \qquad
\qquad
\qquad
\qquad

9

Axis-aligned 3D Rotations

- 2D rotations implicitly rotate about a third out of plane axis

[^1]
Axis-aligned 3D Rotations

- 2 D rotations implicitly rotate about a third out of plane axis

$$
\mathbf{R}=\left[\begin{array}{cc}
\cos (\theta) & -\sin (\theta) \\
\sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

Note: looks same as $\tilde{\mathbf{R}}$

	Axis-aligned 3D Rotations
$\mathbf{R}_{x}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \cos (\theta) & -\sin (\theta) \\ 0 & \sin (\theta) & \cos (\theta)\end{array}\right]$	
$\mathbf{R}_{y}=\left[\begin{array}{ccc}\cos (\theta) & 0 & \sin (\theta) \\ 0 & 1 & 0 \\ -\sin (\theta) & 0 & \cos (\theta)\end{array}\right]$	
$\mathbf{R}_{i}=\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Axis-aligned 3D Rotations

$$
\begin{aligned}
& \mathbf{R}_{x}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \text { Also right handed "Zup" } \\
& \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
& \mathbf{R}_{z}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

13

Axis-aligned 3D Rotations

- Also known as "direction-cosine" matrices

$$
\begin{gathered}
\mathbf{R}_{\hat{x}}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right] \quad \mathbf{R}_{y}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right] \\
\mathbf{R}_{i}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

\qquad

	Arbitrary Rotations
	$\mathbf{R}=\mathbf{R}_{\hat{z}} \cdot \mathbf{R}_{\hat{y}} \cdot \mathbf{R}_{\hat{x}}$ - Result due to Euler... hence called from axis-aligned matrices: Euler Angles - Easy to store in vector - But NOT a vector. $\mathbf{R}=\operatorname{rot}(x, y, z)$

16
Tuesday, February 5, 13

	Arbitrary Rotations
- Allows tumbling	
- Euler angles are non-unique	
- Gimbal-lock	
- Moving -vs- fixed axes	
- Reverse of each other	

17

\mid
Exponential Maps
• Direct representation of arbitrary rotation
• AKA: axis-angle, angular displacement vector θ degrees about some axis
• Encode θ by length of vector
$\theta=\mid \mathbf{r \|}$

Tuesday, February 5,13

18
Tuesday, February 5, 13

Exponential Maps

- Given vector \mathbf{r}, how to get matrix \mathbf{R}
- Method from text:

1. rotate about x axis to put \mathbf{r} into the $x-y$ plane
2. rotate about z axis align \mathbf{r} with the x axis
3. rotate $\boldsymbol{\theta}$ degrees about x axis
4. undo \#2 and then \#1
5. composite together
\qquad

21

22

Exponential Maps

- Building the matrix
$\mathbf{x}^{\prime}=\left(\left(\hat{\mathbf{r}} \hat{\mathbf{r}}^{\mathrm{t}}\right)+\sin (\theta)(\hat{\mathbf{r}} \times)-\cos (\theta)(\hat{\mathbf{r}} \times)(\hat{\mathbf{r}} \times)\right) \mathbf{x}$
$(\hat{\mathbf{r}} \times)=\left[\begin{array}{ccc}0 & -\hat{r}_{z} & \hat{r}_{y} \\ \hat{r}_{z} & 0 & -\hat{r}_{x} \\ -\hat{r}_{y} & \hat{r}_{x} & 0\end{array}\right]$
Antisymmetric matrix
$(\mathbf{a} \times) \mathbf{b}=\mathbf{a} \times \mathbf{b}$
Easy to verify by expansion
\qquad
23

Exponential Maps

- Allows tumbling
- No gimbal-lock!
- Orientations are space within π-radius ball
- Nearly unique representation
- Singularities on shells at 2π
- Nice for interpolation

Exponential Maps
-Why exponential?

- Recall series expansion of e^{x}

$$
e^{x}=1+\frac{x}{1!}+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\cdots
$$

Exponential Maps

-Why exponential?

- Recall series expansion of e^{x}
- Euler: what happens if you put in $i \theta$ for x

$$
\begin{gathered}
e^{i \theta}=1+\frac{i \theta}{1!}+\frac{-\theta^{2}}{2!}+\frac{-i \theta^{3}}{3!}+\frac{\theta^{4}}{4!}+\cdots \\
=\left(1+\frac{-\theta^{2}}{2!}+\frac{\theta^{4}}{4!}+\cdots\right)+i\left(\frac{\theta}{1!}+\frac{-\theta^{3}}{3!}+\cdots\right) \\
=\cos (\theta)+i \sin (\theta)
\end{gathered}
$$

\qquad

Exponential Maps

-Why exponential?
$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{(\hat{\mathbf{r}} \times)^{3} \theta^{3}}{3!}+\frac{(\hat{\mathbf{r}} \times)^{4} \theta^{4}}{4!}+\cdots$
But notice that: $(\hat{\mathbf{r}} \times)^{3}=-(\hat{\mathbf{r}} \times)$
$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots$

Exponential Maps

$e^{(\hat{\mathbf{r}} \times) \theta}=\mathbf{I}+\frac{(\hat{\mathbf{r}} \times) \theta}{1!}+\frac{(\hat{\mathbf{r}} \times)^{2} \theta^{2}}{2!}+\frac{-(\hat{\mathbf{r}} \times) \theta^{3}}{3!}+\frac{-(\hat{\mathbf{r}} \times)^{2} \theta^{4}}{4!}+\cdots$
$e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times)\left(\frac{\theta}{1!}-\frac{\theta^{3}}{3!}+\cdots\right)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}\left(+\frac{\theta^{2}}{2!}-\frac{\theta^{4}}{4!}+\cdots\right)$
$e^{(\hat{\mathbf{r}} \times) \theta}=(\hat{\mathbf{r}} \times) \sin (\theta)+\mathbf{I}+(\hat{\mathbf{r}} \times)^{2}(1-\cos (\theta))$

Tuesday, February 5, 13

	Quaternions
	More popular than exponential maps - Natural extension of $e^{i \theta}=\cos (\theta)+i \sin (\theta)$ • Interesting history (1843)

29

Quaternions

- Uber-Complex Numbers

$$
\begin{gathered}
\mathrm{q}=\left(z_{1}, z_{2}, z_{3}, s\right)=(\mathbf{z}, s) \\
\mathrm{q}=i z_{1}+j z_{2}+k z_{3}+s \\
i^{2}=j^{2}=k^{2}=-1 \quad \begin{array}{ll}
i j=k & j i=-k \\
j k=i & k j=-i \\
k i=j & i k=-j
\end{array}
\end{gathered}
$$

31

Quaternions

- Vectors as quaternions

$$
\mathrm{v}=(\mathbf{v}, 0)
$$

- Rotations as quaternions

$$
\mathrm{r}=\left(\hat{\mathbf{r}} \sin \frac{\theta}{2}, \cos \frac{\theta}{2}\right)
$$

$$
x^{\prime}=r \cdot x \cdot r^{*}
$$

- Composing rotations

$$
r=r_{1} \cdot r_{2} \quad \text { Compare to Exp. Map }
$$

	Quaternions		
- No tumbling gimbal-lock			
- Orientations are "double unique"			
- Surface of a 3-sphere in 4D $\quad\\|r\\|=1$			
- Nice for interpolation			

\qquad

	Rotation Matrices
- Eigen system	
- One real eigenvalue	
- Real axis is axis of rotation	
- Imaginary values are 2D rotation as complex number	
- Logarithmic formula	
$(\hat{\mathbf{r}} \times)=\ln (\mathbf{R})=\frac{\theta}{2 \sin \theta}\left(\mathbf{R}-\mathbf{R}^{\mathbf{T}}\right)$	
$\theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(\mathbf{R})-1}{2}\right)$	
Similar formulae as for exponential...	

35

Rotation Matrices

- Consider:

$$
\mathbf{R I}=\left[\begin{array}{lll}
r_{x x} & r_{x y} & r_{x z} \\
r_{y x} & r_{y y} & r_{y z} \\
r_{z x} & r_{z y} & r_{z z}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

- Columns are coordinate axes after (true for general matrices)
- Rows are original axes in original system (not true for general matrices)
\qquad

37

Scene Graphs

- Draw scene with pre-and-post-order traversal
- Apply node, draw children, undo node if applicable
- Nodes can do pretty much anything
- Geometry, transformations, groups, color, switch, scripts, etc.
- Node types are application/implementation specific
- Requires a stack to implement "undo" post children
- Nodes can cache their children
- Instances make it a DAG, not strictly a tree
- Will use these trees later for bounding box trees
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

39

	Note:
- Rotation stuff in the book is a bit weak... luckily you have these nice slides!	

40

[^0]: Tuesday, February 5, 13

[^1]: Tuesday, February 5, 13

