CS-I 84: Computer Graphics

Lecture \#4:2DTransformations

Prof. James O'Brien

University of California, Berkeley
volisat 10

	Introduction
- Transformation:	
An operation that changes one configuration into another	
- For images, shapes, etc.	
A geometrit transformation maps positions that define the object to	
other positions	
Linear transformation means the transformation is defined by a linear	
function... which is what matrices are good for.	

Some Examples

Original

Sunday, February 3, 13

[^0]

Sunday, February 3, 13

	Linear is Linear
	- Polygons defined by points
- Edges defined by interpolation between two points	
- Interior defined by interpolation between all points	
- Linear interpolation	

	Linear is Linear
- Composing two linear function is still linear	
- Transform polygon by transforming vertices	
Sunday, February 3,13 Scale	

Linear is Linear

- Composing two linear function is still linear
- Transform polygon by transforming vertices

$$
\begin{aligned}
& f(x)=a+b x \quad g(f)=c+d f \\
& g(x)=c+d f(x)=c+a d+b d x
\end{aligned}
$$

$$
g(x)=a^{\prime}+b^{\prime} x
$$

	Points in Space - Represent point in space by vector in R^{n} • Relative to some origin! - Relative to some coordinate axes! - The choice of coordinate system is arbitrary and should be convenient.
Later we'll add something extra...	

Basic Transformations

- Basic transforms are: rotate, scale, and translate
-Shear is a composite transformation!
Translate
17

Linear Functions in 2D

$$
\begin{gathered}
x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y \\
y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y \\
{\left[\begin{array}{c}
x^{\prime} \\
y^{\prime}
\end{array}\right]=\left[\begin{array}{l}
t_{x} \\
t_{y}
\end{array}\right]+\left[\begin{array}{ll}
M_{x x} & M_{x y} \\
M_{y x} & M_{y y}
\end{array}\right] \cdot\left[\begin{array}{l}
x \\
y
\end{array}\right]} \\
\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}
\end{gathered}
$$

	Rotations
	Preserve lengths and distance to origin
	Rotation matrices are orthonormal
\cdot	$\operatorname{Det}(\mathbf{R})=1 \neq-1$
\cdot	In 2D rotations commute...
\cdot	But in 3D they won't!

	ScaleS
	Diagonal matrices - Diagonal parts are scale in X and scale in Y directions - Negative values flip - Two negatives make a positive (I80 deg. rotation) - Really, axis-aligned scales

- Shears are not really primitive transforms
- Related to non-axis-aligned scales
- More shortly.....

Translation

- This is the not-so-useful way:
$\leadsto \rightarrow \bigwedge \quad \mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$
Translate

Note that its not like the others.

Arbitrary Matrices

- For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

- Soon, translations will be assimilated as well
-What does an arbitrary matrix mean?

Singular Value Decomposition

- For any matrix, \mathbf{A}, we can write SVD:

$$
\mathbf{A}=\mathbf{Q S R}^{\top}
$$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition

$$
\mathbf{A}=\mathbf{P R S R}^{\top}
$$

where \mathbf{P} is also orthonormal $\mathbf{P}=\mathbf{Q R}^{\top}$

Decomposing Matrices

- We can force \mathbf{P} and \mathbf{R} to have Det=1 so they are rotations
- Any matrix is now:
- Rotation:Rotation:Scale:Rotation
- See, shear is just a mix of rotations and scales

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{p}+\mathbf{B t}=\mathbf{C p}+\mathbf{u}
$$

Homogeneous Coordinates

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$
\mathbf{p}=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \quad \widetilde{\mathbf{p}}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

- For directions the extra coordinate is a zero

Homogeneous Translatio
$\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]$
$\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}$
The tildes are for clarity to

The tildes are for clarity to distinguish homogenized from non-homogenized vectors.

	Rotate About Arb. Point
	- Step 1:Translate point to origin
- Step 2: Rotate as desired	
- Step 3: Put back where it was	
Don't negate the $1 \ldots$.	

Scale About Arb. Axis
- Diagonal matrices scale about coordinate axes only:

Scale About Arb. Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes

	Scale About Arb. Axis
- Step 1:Translate axis to origin	
axes 2: Rotate axis to align with one of the coordinate	
- Step 3: Scale as desired	

	Scale About Arb. Axis
	Step I:Translate axis to origin - Step 2: Rotate axis to align with one of the coordinate axes - Step 3: Scale as desired - Steps 4\&5: Undo 2 and I (reverse order)

	Order Matters!
- The order that matrices appear in matters	
$\mathbf{A} \cdot \mathbf{B} \neq \mathbf{B A}$	
- Some special cases work, but they are special	
- But matrices are associative	
$(\mathbf{A} \cdot \mathbf{B}) \cdot \mathbf{C}=\mathbf{A} \cdot(\mathbf{B} \cdot \mathbf{C})$	
- Think about efficiency when you have many points to	
transform...	

Matrix Inverses

- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A}
- Special cases:
- Translation: negate \boldsymbol{t}_{x} and $\boldsymbol{t}_{\boldsymbol{y}}$
- Rotation: transpose
- Scale: invert diagonal (axis-aligned scales)
- Others:
- Invert matrix
- Invert SVD matrices

PointVectors / Direction Vectors

- Points in space have a 1 for the " w " coordinate
- What should we have for $\mathbf{a}-\mathbf{b}$?
- $w=0$
- Directions not the same as positions
- Difference of positions is a direction
- Position + direction is a position
- Direction + direction is a direction
- Position + position is nonsense

Some Things Require Care

For example normals transform abnormally

$$
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0
$$

Some Things Require Care

For example normals transform abnormally

$$
\begin{gathered}
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M} \mathbf{t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=0
\end{gathered}
$$

Some Things Require Care

For example normals transform abnormally

$$
\begin{gathered}
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M} \mathbf{t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=0 \\
\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}}\right) \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}_{\mathbf{N}}^{\mathbf{T}}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}}
\end{gathered}
$$

Some Things Require Care

For example normals transform abnormally

$$
\begin{gathered}
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M} \mathbf{t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathrm{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=0 \\
\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}}\right) \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}_{\mathbf{N}}^{\mathbf{T}}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \\
\mathbf{n}_{\mathbf{N}}=\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{\mathbf{1}}\right)^{\mathbf{T}} \\
\mathbf{N}=\left(\mathbf{M}^{-\mathbf{1}}\right)^{\mathbf{T}} \quad \text { See book for details }
\end{gathered}
$$

	Suggested Reading
Fundamentals of Computer Graphics by Pete Shirley	
• Chapter 6	
- And re-read chapter 5 if your linear algebra is rusty!	

[^0]: Sunday, February 3, 13

