## CS-I 84: Computer Graphics

Lecture \#2: Color

Prof. James O'Brien
University of California, Berkeley
2013.522.10


|  | Today |
| :--- | :--- |
|  | - Color, Light, and Perceptions <br> •The basics |
|  | 3 |
| 3 |  |

## What is Light?

- Radiation in a particular frequency range


Sunday, January 27, 13

## Spectral Colors

- Light at a single frequency
- Also called monochromatic (an overloaded term)

- Bright and distinct in appearance


Reproduction only, not a real spectral color!

## Spectral Colors

- Light at a single frequency
- Also called monochromatic (an overloaded term)

- Bright and distinct in appearance


Reproduction only, not a real spectral color!

## Other Colors

- Most colors seen are a mix light of several frequencies


Curves describe spectral composition $\Phi(\lambda)$ of stimulus

## Other Colors

- Most colors seen are a mix light of several frequencies


Sunday, January 27, 13

## Other Colors

- Most colors seen are a mix light of several frequencies



## Perception -vs- Measurement

- You do not "see" the spectrum of light
- Eyes make limited measurements
- Eyes physically adapt to circumstance
- You brain adapts in various ways also
- Weird psychological/psychophysical stuff also happens

Everything is Relative




Adapt


Sunday, January 27, 13

It's all in your mind...

| XXXXXX | GREEN | GREEN |
| :--- | :--- | :--- |
| XXXXXX | BLUE | BLUE |
| XXXXXX | YELLOW | YELLOW |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | ORANGE | ORANGE |
| XXXXXX | RED | RED |
| XXXXXX | WHITE | WHITE |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | ORANGE | ORANGE |
| XXXXXX | BLUE | BLUE |
| XXXXXX | RED | RED |
| XXXXXX | GREEN | GREEN |
| XXXXXX | WHITE | WHITE |
| XXXXXX | YELLOW | YELLOW |
| XXXXXX | PURPLE | PURPLE |
| XXXXXX | RED | RED |
| XXXXXX | GREEN | GREEN |
| XXXXXX | BLUE | BLUE |


| Mach Bands |
| :---: |
|  |
|  |
|  |
|  |

## Bezold Effect



[^0]


## Perception

The eye does not see intensity values...


Eyes as Sensors

The human eye contains cells that sense light

- Rods
- No color (sort of)
- Spread over the retina
- More sensitive

- Cones
- Three types of cones
- Each sensitive to different frequency distribution
- Concentrated in fovea (center of the retina)
- Less sensitive

Sunday, January 27, 13

## Rods vs Cones



## Eyes as Sensors





| Cones |  |
| :---: | :---: |
| - Response of a cone is given by a convolution integral :$\begin{aligned} L & =\int \Phi(\lambda) L(\lambda) \mathrm{d} \lambda \quad \text { continuous version of a dot product } \\ M & =\int \Phi(\lambda) M(\lambda) \mathrm{d} \lambda \\ S & =\int \Phi(\lambda) S(\lambda) \mathrm{d} \lambda \end{aligned}$ |  |
|  |  |



Sunday, January 27, 13

## Trichromaticity

Eye records color by 3 measurements
We can "fool" it with combination of 3 signals

So display devices (monitors, printers, etc.) can generate perceivable colors as mix of 3 primaries

## Cone Responses are Linear

Response to stimulus $\Phi_{1}$ is $\left(L_{1}, M_{1}, S_{1}\right)$
Response to stimulus $\Phi_{2}$ is ( $L_{2}, M_{2}, S_{2}$ )
Then response to $\Phi_{1}+\Phi_{2}$ is $\left(L_{1}+L_{2}, M_{1}+M 2, S_{1}+S_{2}\right)$

Response to $n \Phi_{1}$ is ( $n L_{1}, n M_{2}, n S_{1}$ )

## Cones and Metamers

Cone response is an integral

$$
L=\int \Phi(\lambda) L(\lambda) \mathrm{d} \lambda \quad M=\int \Phi(\lambda) M(\lambda) \mathrm{d} \lambda \quad S=\int \Phi(\lambda) S(\lambda) \mathrm{d} \lambda
$$

Metamers: Different light input $\Phi_{1}(\lambda), \Phi_{2}(\lambda)$ produce same $L, M, S$ cone response

- Different spectra look the same
- Useful for measuring color


## Additive Mixing

Given three primaries we agree on $p_{1}, p_{2}, p_{3}$
Match generic input light with $\Phi=\alpha p_{1}+\beta p_{2}+\gamma p_{3}$
Negative not realizable, but can add primary to test light
Color now described by $\alpha, \beta, \gamma$

Example: computer monitor [RGB]

## Additive Color Matching



Show test light spectrum on left
Mix "primaries" on right until they match
The primaries need not be RGB

## Experiment I

## Experiment I



## Experiment I



## Experiment I



## Experiment 2



## Experiment 2



## Experiment 2



## Experiment 2



## Color Matching Functions



Input wavelengths are CIE 1931 monochromatic primaries

## Using Color Matching Functions

For a monochromatic light of wavelength $\lambda_{i}$ we know the amount of each primary necessary to match it:

$$
\bar{r}\left(\lambda_{i}\right), \bar{g}\left(\lambda_{i}\right), \bar{b}\left(\lambda_{i}\right)
$$



Given a new light input signal

$$
\Phi=\left(\begin{array}{c}
\phi\left(\lambda_{1}\right) \\
\vdots \\
\phi\left(\lambda_{N}\right)
\end{array}\right)
$$



Compute the primaries necessary to match it

## Using Color Matching Functions

Given color matching functions in matrix form and new light

amount of each primary necessary to match is given by $C \Phi$

## CIE XYZ

Imaginary set of color primaries with positive values, $\mathrm{X}, \mathrm{Y}, \mathrm{Z}$


## Rescaled XYZ to xyz

Rescale $X, Y$, and $Z$ to remove luminance, leaving chromaticity:

$$
\begin{aligned}
& x=X /(X+Y+Z) \\
& y=Y /(X+Y+Z) \\
& z=Z /(X+Y+Z) \\
& x+y+z=1
\end{aligned}
$$

Because the sum of the chromaticity values $x, y$, and $z$ is always I.0, a plot of any two of them loses no information

Such a plot is a chromaticity diagram

## CIE Chromaticity Diagram



## Gamut

Gamut is the chromaticities generated by a set of primaries
Because everything we've done is linear, interpolation between chromaticities on a chromaticity plot is also linear
Thus the gamut is the convex hull of the primary chromaticities

What is the gamut of the CIE 1931 primaries?

## CIE 193I RGB Gamut



Other Gamuts (LCDs and NTSC)


Sunday, January 27, 13

## Subtractive Mixing

Given three primaries we agree on $p_{1}, p_{2}, p_{3}$
Make generic color with $\Phi=W-\left(\alpha p_{1}+\beta p_{2}+\gamma p_{3}\right)$
Max limited by $W$
Color now described by $\alpha, \beta, \gamma$

Example: ink [CMYK]


## Additive \& Subtractive Primaries



## Additive \& Subtractive Primaries

Incorrect to say "the additive primaries are red, green, and blue"

- Any set of three non-colinear primaries yields a gamut
- Primaries that appear red, green, and blue are a good choice, but not the only choice
- Are additional (non-colinear) primaries always better?

Similarly saying "the subtractive primaries are magenta, cyan, and yellow" is also incorrect, for the same reasons

- Subtractive primaries must collectively block the entire visible spectrum, but many sets of blockers that do so are acceptable "primaries"
- The use of black ink (the $k$ in cmyk) is a good example
- Modern ink-jet printers often have 6 or more ink colors


## Color Spaces



## Color Spaces

RGB color cube
HSV color cone
CIE $(x, y)$


MacAdam Ellipses ( $10 x$ ) Colors in ellipses indistinguishable from center.

## Color Spaces

RGB color cube
HSV color cone
CIE $(x, y)$
CIE $(u, v)$


Scaled to be closer to circles.

$$
\left[\begin{array}{l}
u^{\prime} \\
v^{\prime}
\end{array}\right]=\frac{1}{X+15 Y+3 Z}\left[\begin{array}{l}
4 X \\
9 Y
\end{array}\right]
$$

## Color Spaces

RGB color cube
HSV color cone
CIE $(x, y)$
$\mathrm{CIE}(u, v)$
CMYK
Many others...




## Rods Contribute to Color



|  | Color Phenomena |
| :--- | :--- |
|  |  |
| - Light sources seldom shine directly in eye |  |
| - Light follows some transport path, i.e.: |  |
| - Source |  |
| - Air |  |
| - Object surface |  |
| • Air |  |
| - Eye |  |
| - Color effected by interactions |  |


|  | Reflection |
| :--- | :--- |
|  |  |
| - Light strikes object <br> - Some frequencies reflect <br> - Some adsorbed <br> - Reflected spectrum is light times <br> surface <br> - Recall metamers... |  |


|  | Transmission |  |
| :--- | :--- | :--- |
|  |  |  |
|  | - Light strikes object |  |
| - Some frequencies pass |  |  |
| - Some adsorbed (or reflected) |  |  |



| Interference |  |
| :---: | :---: |
| - Wave behavior of light <br> - Cancelation <br> - Reinforcement <br> - Wavelength dependent | (a) |





## Fluorescence / Phosphorescence

- Photon come in, knocks up electron
- Electron drops and emits photon at other frequency
- May be some latency
- Radio active decay can also emit visible photons



## Black Body Radiation

- Hot objects radiate energy
- Frequency is temperature dependent
- Moderately hot objects get into visible range
- Spectral distribution is given by

$$
E(\lambda) \propto\left(\frac{1}{\lambda^{5}}\right)\left(\frac{1}{\exp (h c / k \lambda T)-1}\right)
$$

- Leads to notion of "color temperature"



[^0]:    Sunday, January 27, 13

