
J. Bender, M. Müller and M. Macklin / Position-Based Simulation Methods in Computer Graphics

4. The Core Of Position Based Dynamics

In this section we present Position-Based Dynamics (PBD),
an approach which omits the velocity and acceleration layer
and immediately works on the positions [MHHR07]. We
will first describe the basic idea and the simulation algo-
rithm of PBD. Then we will focus specifically on how to
solve the system of constraints that describe the object to be
simulated.

In the following the position-based approach is introduced
first for particle systems. An extension to handle rigid bodies
is presented in Section 5.9.

4.1. The Algorithm

The objects to be simulated are represented by a set of N
particles and a set of M constraints. For each constraint we
introduce a stiffness parameter k which defines the strength
of the constraint in a range from zero to one. This gives a
user more control over the elasticity of a body.

4.1.1. Time Integration

Algorithm 1 Position-based dynamics
1: for all vertices i do
2: initialize xi = x0

i , vi = v0
i , wi = 1/mi

3: end for
4: loop
5: for all vertices i do vi vi +Dtwifext(xi)
6: for all vertices i do pi xi +Dtvi
7: for all vertices i do genCollConstraints(xi! pi)
8: loop solverIteration times
9: projectConstraints(C1, . . . ,CM+MColl ,p1, . . . ,pN )

10: end loop
11: for all vertices i do
12: vi (pi�xi)/Dt
13: xi pi
14: end for
15: velocityUpdate(v1, . . . ,vN )
16: end loop

Given this data and a time step Dt, the simulation proceeds
as described by Algorithm 1. Since the algorithm simulates
a system which is second order in time, both the positions
and the velocities of the particles need to be specified in (1)-
(3) before the simulation loop starts. Lines (5)-(6) perform
a simple symplectic Euler integration step on the velocities
and the positions. The new locations pi are not assigned to
the positions directly but are only used as predictions. Non-
permanent external constraints such as collision constraints
are generated at the beginning of each time step from scratch
in line (7). Here the original and the predicted positions are
used in order to perform continuous collision detection. The
solver (8)-(10) then iteratively corrects the predicted posi-
tions such that they satisfy the Mcoll external as well as the

M internal constraints. Finally, the corrected positions pi are
used to update the positions and the velocities. It is essential
here to update the velocities along with the positions. If this
is not done, the simulation does not produce the correct be-
havior of a second order system. As you can see, the integra-
tion scheme used here is very similar to the Verlet method. It
is also closely related to Jos Stam’s Nucleus solver [Sta09]
which also uses a set of contraints to describe the objects to
be simulated. The main difference is that Nucleus solves the
constraints for velocities, not positions.

4.1.2. Damping

The quality of dynamic simulations can generally be im-
proved by the incorporation of an appropriate damping
scheme. As a positive effect, damping can improve the sta-
bility by reducing temporal oscillations of the point posi-
tions of an object. This enables the use of larger time steps
which increases the performance of a dynamic simulation.
On the other hand, damping changes the dynamic motion
of the simulated objects. The resulting effects can be either
desired, e.g. reduced oscillations of a deformable solid, or
disturbing, e.g. changes of the linear or angular momentum
of the entire object.

Generally, a damping term CẊ can be incorporated into
the motion equation of an object where Ẋ denotes the vector
of all first time derivatives of positions. If the user-defined
matrix C is diagonal, absolute velocities of the points are
damped, which sometimes is referred to as point damping. If
appropriately computed, such point damping forces result in
an improved numerical stability by reducing the acceleration
of a point. Such characteristics are desired in some settings,
e.g. in the context of friction. In the general case, however,
the overall slow-down of an object, caused by point damp-
ing forces, is not desired. Point damping forces are, e.g.,
used in [TF88] or in [PB88], where point damping is used
for dynamic simulations with geometric constraints such as
point-to-nail.

In order to preserve linear and angular momentum of
deformable objects, symmetric damping forces, usually re-
ferred to as spring damping forces, can be used. Such
forces can be represented by non-diagonal entries in the ma-
trix C. Damping forces are, e.g., described by Baraff and
Witkin [BW98] or Nealen et al. [NMK⇤06]. These forces
can also be applied to position-based methods. However, as
the approaches of Baraff and Witkin and Nealen et al. rely on
topological information of the object geometry, they cannot
be applied to meshless techniques such as shape matching.

Point and spring damping can be used to reduce cur-
rent velocities or relative velocities. However, it is generally
more appropriate to consider predicted velocities or relative
velocities for the next time step.

An interesting damping alternative has been presented
in [SGT09]. Here, the idea of symmetric, momentum-
conserving forces is extended to meshless representations.

© The Eurographics Association 2015.


