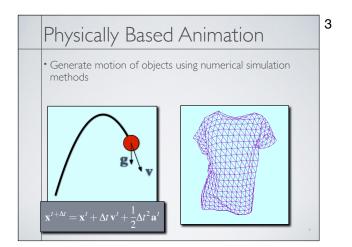
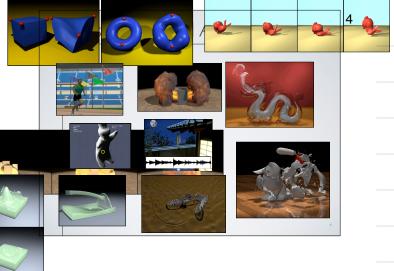
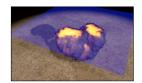
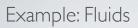
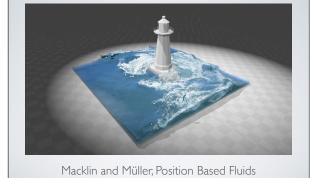
	1
CS-184: Computer Graphics	
Lecture #18: Simulation Basics	
Prof. James O'Brien University of California, Berkeley	
(With some slides from Prof. Ren Ng who is really an awesome guy.)	
	1.
Today	2
Introduction to Simulation Basic particle systems	
Time integration (simple version)	

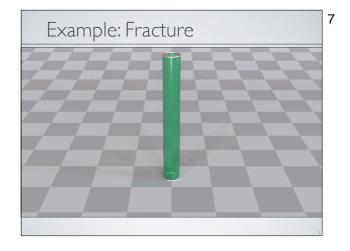


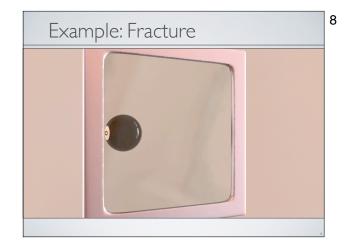




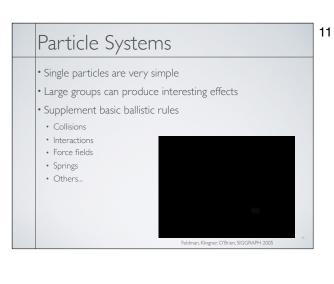








9 Particle Systems • Single particles are very simple • Large groups can produce interesting effects Supplement basic ballistic rules Collisions Interactions Force fields Springs Others... 10 PARTICLE DREAMS Karl Sims Optomystic



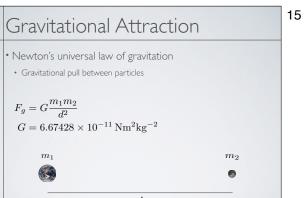
Basic Particles

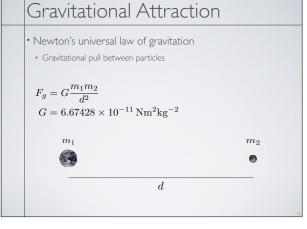
- Basic governing equation
- $\cdot f$ is a sum of a number of things
- Gravity: constant downward force proportional to mass
- Simple drag: force proportional to negative velocity
- Particle interactions: particles mutually attract and/or repell
- Beware $O(n^2)$ complexity!
- Force fields
- Wind forces
- User interaction

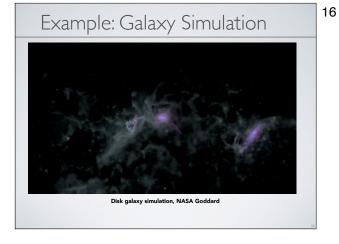
 $\ddot{x} = \frac{1}{m}f$

12			

13 Basic Particles • Properties other than position • Color • Temp • Age Differential equations also needed to govern these properties Collisions and other constrains directly modify position and/or velocity 14 Particle Rules Multiple Burst Bryan E. Feldman, James F. O'Brien, and Okan Arikan. "Animating Suspended Particle Explosions". In Proceedings of ACM SIGGRAPH 2003, pages 708–715, August 2003.







- Euler's Method
- Simple
- Commonly used
- Very inaccurate
- Most often goes unstable

$$\mathbf{x}^{t+\Delta t} = \mathbf{x}^t + \Delta t \, \mathbf{\dot{x}}^t$$

17

18

$$\mathbf{\dot{x}}^{t+\Delta t} = \mathbf{\dot{x}}^t + \Delta t \, \mathbf{\ddot{x}}^t$$

Integration

• For now let's pretend

$$\boldsymbol{f} = m\boldsymbol{v}$$

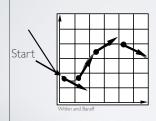
• Velocity (rather than acceleration) is a function of force

 $\dot{\boldsymbol{x}} = f(\boldsymbol{x}, t)$

Note: Second order ODEs can be turned into first order ODEs using extra variables.

$$\boldsymbol{f} = m \boldsymbol{v}$$

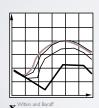
• Velocity (rather than acceleration) is a function of force



$$\dot{\boldsymbol{x}} = \mathsf{f}(\boldsymbol{x},t)$$

Integration

- With numerical integration, errors accumulate
- Euler integration is particularly bad



$$x := x + \Delta t \ \mathsf{f}(\boldsymbol{x}, t)$$

20

- Stability issues can also arise
- Occurs when errors lead to larger errors
- Often more serious than error issues

 $\dot{\boldsymbol{x}} = [-\sin(\omega t) , -\cos(\omega t)]$

Integration

Modified Euler

$$\boldsymbol{x}^{t+\Delta t} = \boldsymbol{x}^t + \frac{\Delta t}{2} \left(\dot{\boldsymbol{x}}^t + \dot{\boldsymbol{x}}^{t+\Delta t} \right)$$

$$\dot{\boldsymbol{x}}^{t+\Delta t} = \dot{\boldsymbol{x}}^t + \Delta t \ \ddot{\boldsymbol{x}}^t$$

$$oldsymbol{x}^{t+\Delta t} = oldsymbol{x}^t + \Delta t \ \dot{oldsymbol{x}}^t + rac{(\Delta t)^2}{2} \ \ddot{oldsymbol{x}}^t$$

- Midpoint method
- a. Compute half Euler step
- b. Eval. derivative at halfway
- c. Retake step
- Other methods
- Verlet
- Runge-Kutta
- And many others...

X

23

Δ

Integration

- Implicit methods
- Informally (incorrectly) called backward methods
- Use derivatives in the future for the current step

$$\begin{split} \boldsymbol{x}^{t+\Delta t} &= \boldsymbol{x}^t + \Delta t \; \dot{\boldsymbol{x}}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \dot{\boldsymbol{x}}^t + \Delta t \; \ddot{\boldsymbol{x}}^{t+\Delta t} \\ \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \\ \\ \ddot{\boldsymbol{x}}^{t+\Delta t} &= \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \end{split}$$

- Implicit methods
- Informally (incorrectly) called backward methods
- Use derivatives in the future for the current step

$$\begin{split} \dot{\boldsymbol{x}}^{t+\Delta t} &= \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \\ \dot{\boldsymbol{x}}^{t+\Delta t} &= \dot{\boldsymbol{x}}^t + \Delta t \; \mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}, t + \Delta t) \end{split}$$

- Solve nonlinear problem for $oldsymbol{x}^{t+\Delta t}$ and $\dot{oldsymbol{x}}^{t+\Delta t}$
- This is fully implicit backward Euler
- Many other implicit methods exist...
- Modified Euler is *partially* implicit as is Verlet

Temp Slide

Need to draw reverse diagrams....

26	

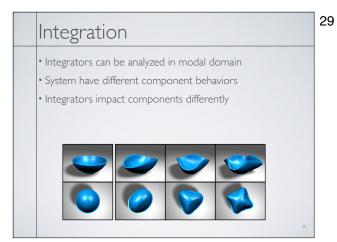
$$\mathsf{V}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{V}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{A} \cdot (\Delta \boldsymbol{x}) + \mathbf{B} \cdot (\Delta \dot{\boldsymbol{x}})$$

$$\mathsf{A}(\boldsymbol{x}^{t+\Delta t}, \dot{\boldsymbol{x}}^{t+\Delta t}) \approx \mathsf{A}(\boldsymbol{x}^t, \dot{\boldsymbol{x}}^t) + \mathbf{C} \cdot (\Delta \boldsymbol{x}) + \mathbf{D} \cdot (\Delta \dot{\boldsymbol{x}})$$

$$\begin{bmatrix} \boldsymbol{x}^{t+\Delta t} \\ \dot{\boldsymbol{x}}^{t+\Delta t} \end{bmatrix} = \begin{bmatrix} \boldsymbol{x}^t \\ \dot{\boldsymbol{x}}^t \end{bmatrix} + \Delta t \left(\begin{bmatrix} \dot{\boldsymbol{x}}^t \\ \ddot{\boldsymbol{x}}^t \end{bmatrix} + \begin{bmatrix} \mathbf{A} \ \mathbf{B} \\ \mathbf{C} \ \mathbf{D} \end{bmatrix} \begin{bmatrix} \Delta \boldsymbol{x} \\ \Delta \dot{\boldsymbol{x}} \end{bmatrix} \right)$$

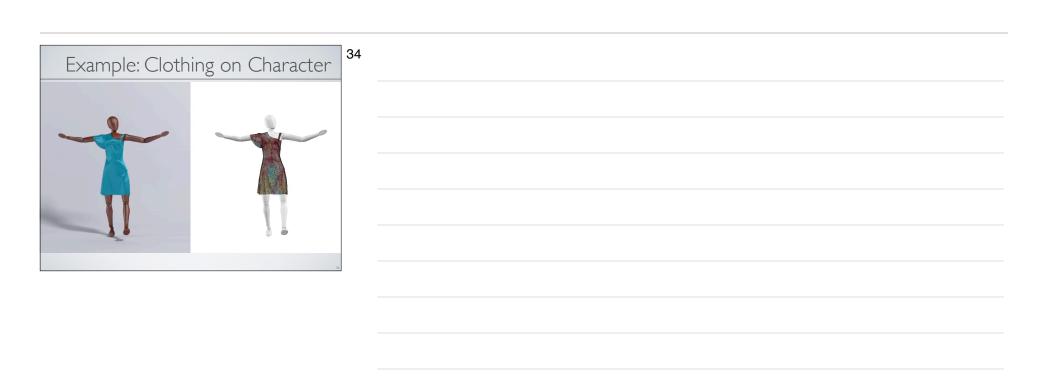
- Explicit methods can be conditionally stable
- Depends on time-step and stiffness of system
- Fully implicit can be **un**conditionally stable
- May still have large errors
- Semi-implicit can be conditionally stable
- Nonlinearities can cause instability
- Generally more stable than explicit
- Comparable errors as explicit
- Often show up as excessive damping

28



Example: Mass Spring Rope

Example: Hair Slide from Ren Ng



A Simple Spring

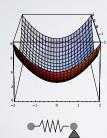
• Ideal **zero**-length spring

$$\textbf{\textit{f}}_{a \rightarrow b} = k_{s}(\textbf{\textit{b}} - \textbf{\textit{a}})$$

- ullet Force pulls points together $oldsymbol{f}_{b
 ightarrow a}$ = $-oldsymbol{f}_{a
 ightarrow b}$
- Strength proportional to distance

A Simple Spring

• Energy potential



$$E = 1/2 k_S(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

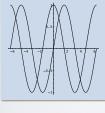
$$egin{aligned} oldsymbol{f}_{a
ightarrow b} &= k_{S}(oldsymbol{b} - oldsymbol{a}) \ oldsymbol{f}_{b
ightarrow a} &= -oldsymbol{f}_{a
ightarrow b} \end{aligned}$$

$$f_{b \to a} = -f_{a \to b}$$

$$m{f}_a = -
abla_a E = -\left[rac{\partial E}{\partial a_x}, rac{\partial E}{\partial a_y}, rac{\partial E}{\partial a_z}
ight]$$

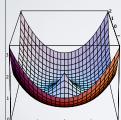
A Simple Spring

• Energy potential: kinetic **vs** elastic



$$E = 1/2 k_{\mathcal{S}}(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$$E = 1/2 \ m(\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$



 $E = k_s \left(||\boldsymbol{b} - \boldsymbol{a}|| - l \right)^2$

Comments on Springs

- Springs with zero rest length are linear
- Springs with non-zero rest length are nonliner
- Force *magnitude* linear w/ discplacement (from rest length)
- Force direction is non-linear
- Singularity at

$$||\boldsymbol{b} - \boldsymbol{a}|| = 0$$

39

• "Mass proportional" damping

$$f = -k_d \dot{a}$$

- Behaves like viscous drag on all motion
- · Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?
- Can help stability... up to a point

Damping

• "Stiffness proportional" damping

$$f_a = -k_d \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||^2} (\boldsymbol{b} - \boldsymbol{a}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$

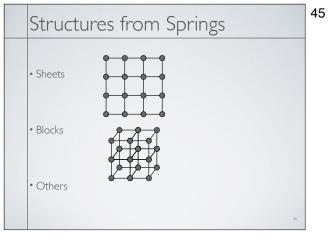
- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
- How to model rusty vs oiled spring
- Should internal damping slow group motion of the pair?

Spring Constants

- Constant $k_{\mathcal{S}}$ gives inconsistent results with different discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length

$$\epsilon = \frac{\Delta l}{l_0} \quad \text{Nice and simple for ID...}$$

- 4	



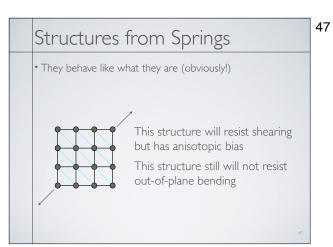
Structures from Springs

• They behave like what they are (obviously!)

shearing

This structure will not resist

This structure will not resist outof-plane bending either...



Structures from Springs

• They behave like what they are (obviously!)

This structure will resist shearing Less bias

Interference between spring sets

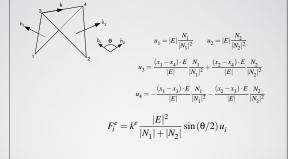
This structure still will not resist out-of-plane bending

This structure will resist shearing Less bias Interference between spring sets

This structure will resist out-ofplane bending Interference between spring sets Odd behavior

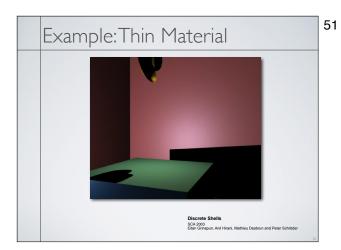
How do we set spring constants?

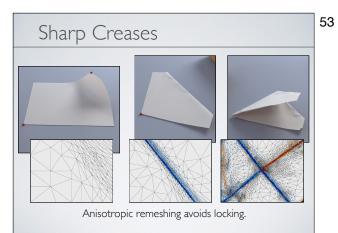
Edge Springs



From Bridson et al., 2003, also see Grinspun et al., 2003

50





Fracture Dominated by discretization artifacts Fracture Natural appearance

