
CS-184: Computer Graphics
Lecture #16: Forward and Inverse Kinematics

Prof. James O’Brien
University of California, Berkeley

V2016-F-16-1.0

1

2

Today

• Forward kinematics
• Inverse kinematics

• Pin joints
• Ball joints
• Prismatic joints

2

16-Kinematics.key - November 16, 2016

3

Forward Kinematics
• Articulated skeleton

• Topology (what’s connected to what)
• Geometric relations from joints
• Independent of display geometry
• Tree structure

• Loop joints break “tree-ness”

3

4

Forward Kinematics
• Root body

• Position set by “global” transformation
• Root joint

• Position
• Rotation

• Other bodies relative to root
• Inboard toward the root
• Outboard away from root

4

16-Kinematics.key - November 16, 2016

5

Forward Kinematics
• A joint

• Joint’s inboard body
• Joint’s outboard body

5

6

Forward Kinematics
• A body

• Body’s inboard joint
• Body’s outboard joint

• May have several outboard joints

6

16-Kinematics.key - November 16, 2016

7

Forward Kinematics
• A body

• Body’s inboard joint
• Body’s outboard joint

• May have several outboard joints
• Body’s parent
• Body’s child

• May have several children

7

8

Forward Kinematics
• Interior joints

• Typically not 6 DOF joints
• Pin - rotate about one axis
• Ball - arbitrary rotation
• Prism - translation along one axis

8

16-Kinematics.key - November 16, 2016

9

Forward Kinematics

• Pin Joints
• Translate inboard joint to local origin
• Apply rotation about axis
• Translate origin to location of joint on outboard body

9

10

Forward Kinematics
• Ball Joints

• Translate inboard joint to local origin
• Apply rotation about arbitrary axis
• Translate origin to location of joint on outboard body

10

16-Kinematics.key - November 16, 2016

11

Forward Kinematics

• Prismatic Joints
• Translate inboard joint to local origin
• Translate along axis
• Translate origin to location of joint on outboard body

11

12

Forward Kinematics
• Composite transformations up the hierarchy

12

16-Kinematics.key - November 16, 2016

13

Forward Kinematics
• Composite transformations up the hierarchy

13

14

Forward Kinematics
• Composite transformations up the hierarchy

14

16-Kinematics.key - November 16, 2016

15

Forward Kinematics
• Composite transformations up the hierarchy

15

16

Forward Kinematics
• Composite transformations up the hierarchy

16

16-Kinematics.key - November 16, 2016

Example: Walk Cycle

17

Watt & Watt
Slide credit: Tom Funkhouser

17

Example: Walk Cycle

• Hip joint angle

18

Watt & Watt
Slide credit: Tom Funkhouser

18

16-Kinematics.key - November 16, 2016

Example: Walk Cycle

• Knee joint angle

19

Watt & Watt
Slide credit: Tom Funkhouser

19

Example: Walk Cycle

• Ankle joint angle

20

Watt & Watt
Slide credit: Tom Funkhouser

20

16-Kinematics.key - November 16, 2016

Example Walk Cycle

21

21

22

Inverse Kinematics

• Given
• Root transformation
• Initial configuration
• Desired end point location

• Find
• Interior parameter settings

22

16-Kinematics.key - November 16, 2016

23

Inverse Kinematics

Eg
on

 P
as

zt
or

23

24

Inverse Kinematics
• A simple two segment arm in 2D

Simple System: A Two Segment Arm

Warning: Z−up Coordinate System

24

16-Kinematics.key - November 16, 2016

25

Inverse Kinematics
• Direct IK: solve for the parameters

Direct IK: Solve for and

25

26

Inverse Kinematics
• Why is the problem hard?

• Multiple solutions separated in configuration spaceWhy is this a hard problem?

Multiple solutions separated in
configuration space

26

16-Kinematics.key - November 16, 2016

27

Inverse Kinematics
• Why is the problem hard?

• Multiple solutions connected in configuration spaceWhy is this a hard problem?

Multiple solutions connected in
configuration space

27

28

Inverse Kinematics
• Why is the problem hard?

• Solutions may not always exist

28

16-Kinematics.key - November 16, 2016

29

Inverse Kinematics

• Numerical Solution
• Start in some initial configuration
• Define an error metric (e.g. goal pos - current pos)
• Compute Jacobian of error w.r.t. inputs
• Apply Newton’s method (or other procedure)
• Iterate...

29

30

Inverse Kinematics
• Recall simple two segment arm:

Simple System: A Two Segment Arm

Warning: Z−up Coordinate System

✓1

t

t
✓2

End effector

30

16-Kinematics.key - November 16, 2016

31

Inverse Kinematics
• We can write of the derivatives

Simple System: A Two Segment Arm

31

32

Inverse Kinematics

Simple System: A Two Segment Arm

Direction in Config. Space

32

16-Kinematics.key - November 16, 2016

33

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

Example for two segment arm

33

34

Inverse Kinematics

The Jacobian (of p w.r.t. θ)

34

16-Kinematics.key - November 16, 2016

35

Inverse Kinematics

Solving for and

35

36

Inverse Kinematics

Solving for and

Is the Jacobian invertible?

36

16-Kinematics.key - November 16, 2016

37

Inverse Kinematics
• Problems

• Jacobian may (will!) not always be invertible
• Use pseudo inverse (SVD)
• Robust iterative method

• Jacobian is not constant

• Nonlinear optimization, but problem is (mostly) well
behaved

Problems...

Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD)

Option #2: Use iterative method

Jacobian is not constant

Non−linear optimization...
but problem is well behaved (mostly)

37

38

Inverse Kinematics
Jacobian is not always invertible

• Use pseudo inverse (SVD)

Computing a linear approximation
• End effector only locally moves linearly
• So iterate (choosing proper step size) and update Jacobian after each step
• Choosing step size requires line search at each step

• Choose some step size (say 5 degrees) and compute how to update joint parameters
• Calculate distance of end effector from goal
• If distance decreased take step
• Is distance did not decrease set parameters to be half the current change and try again

Problems...

Jacobian may (will) not be invertible

Option #1: Use pseudo inverse (SVD)

Option #2: Use iterative method

Jacobian is not constant

Non−linear optimization...
but problem is well behaved (mostly)

Solving for and

Is the Jacobian invertible?

38

16-Kinematics.key - November 16, 2016

39

Inverse Kinematics

• More complex systems
• More complex joints (prism and ball)
• More links
• Other criteria (COM or height)
• Hard constraints (joint limits)
• Multiple criteria and multiple chains

39

40

Inverse Kinematics

• Some issues
• How to pick from multiple solutions?
• Robustness when no solutions
• Contradictory solutions
• Smooth interpolation

• Interpolation aware of constraints

• Numerical evaluation of Jacobian

40

16-Kinematics.key - November 16, 2016

Style-Based IK

41

Grochow et al., Style Based Inverse Kinematics

41

42

Inverse Kinematics

Prism Joints

}}

42

16-Kinematics.key - November 16, 2016

43

Inverse Kinematics

Ball Joints

43

44

Inverse Kinematics

Ball Joints (moving axis)

That is the Jacobian for this joint

{

44

16-Kinematics.key - November 16, 2016

45

Inverse Kinematics

Ball Joints (fixed axis)

That is the Jacobian for this joint

{

45

46

Inverse Kinematics
• Many links / joints

• Need a generic method for building JacobianMany Links/Joints

We need a generic method of building Jacobian

1

2a

3

2b

46

16-Kinematics.key - November 16, 2016

47

Inverse Kinematics
• Can’t just concatenate individual matrices

Many Links/Joints

1

2a

3

2b

47

48

Inverse Kinematics
Many Links/Joints

Transformation from body to world

Rotation from body to world

48

16-Kinematics.key - November 16, 2016

49

Inverse Kinematics
Many Links/Joints

Need to transform Jacobians to common
coordinate system (WORLD)

2b

3

1

2a
2b

3

49

50

Inverse Kinematics
Many Links/Joints

Note: Each row in the above
should be transposed....

50

16-Kinematics.key - November 16, 2016

Rigging
• Rigging is a set of higher level controls on a character that

allow more rapid & intuitive modification of pose,
deformations, expression, etc.

• Important
• Like strings on a puppet
• Captures all meaningful  

character changes
• Varies from character to  

character

• Expensive to create
• Manual effort
• Requires both artistic and technical training

51
From Ren Ng

51

Rigging

52

! "
From Ren Ng

52

16-Kinematics.key - November 16, 2016

Types of Rigging

53

• Procedural Rigging

• Skeletal Rigging

• Anatomical Rigging

Skeleton Skinning on top

Al Barr. Global and Local Deformations of
Solid Primitives. SIGGRAPH 1984.

Anatomy-Based Modeling of the Human
Musculature. Scheepers et al. SIGGRAPH

1997.
From Ren Ng

53

Skeletal Rigging

54

• Parameterize character deformation with a skeleton.
• Approximate actual 

skeleton of the  
character.

From Ren Ng

54

16-Kinematics.key - November 16, 2016

Skeletal Rigging

55
From Ren Ng

• Then add skin on top.

55

Posing
• Use the rigging controls to put the character into a given

pose.

56
From Ren Ng

56

16-Kinematics.key - November 16, 2016

Non-linear Deformation

• Barr’s “global and local deformations.”
• Non-linear deformations for bends, twists, tapering, bulges, etc.

57

Al Barr. Global and Local Deformations of Solid Primitives. SIGGRAPH 1984.

From Ren Ng

57

Anatomical Models

• Muscles are attached to bones, sometimes with tendons as well
• The muscles contract in a volume preserving way, thus getting

wider as they get shorter

58
From Ren Ng

58

16-Kinematics.key - November 16, 2016

Anatomical Models
• Skin can be attached to the muscles with springs/dampers and

physically simulated with collisions against bone & muscle

59

Anatomically based modeling, Wilhelms & Van Gelder, 1997

From Ren Ng

59

Anatomical Models

60

Anatomy-Based Modeling of the Human Musculature. Scheepers et al. SIGGRAPH 1997.

Complex musculature built up
from lots of simple primitives.

From Ren Ng

60

16-Kinematics.key - November 16, 2016

Rigging Example

61

Provided by Matthew Lailler via Keenan Crane

From Ren Ng

61

Blend Shapes

• Instead of skeleton, interpolate
directly between surfaces

• E.g., model a collection of facial
expressions:

• Simplest scheme: take linear
combination of vertex positions

• Spline used to control choice of
weights over time

62

Courtesy Félix Ferrand

From Ren Ng

62

16-Kinematics.key - November 16, 2016

Blend Shapes

63

Courtesy Félix Ferrand
From Ren Ng

63

Rib-Based Facial Animation

64

Stpehen W. Bailey, Martin Watt, and James F. O'Brien. "Repurposing Hand Animation for
Interactive Applications". In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 1–10, July 2016.

Stpehen W. Bailey, Martin Watt, and James F. O’Brien / Repurposing Hand Animation for Interactive Applications

Figure 4: Set of frames from an animation synthesized using a model trained on a set of "surprise" expressions.

Figure 5: A visualization of the layered Deformation System for
Toothless’s facial rig that enables real time free-form facial control
shaping.

6. Results

We used the method described above to synthesize animations at
interactive frame rates. The input to our algorithm is film-quality
hand animation. For a feature film, a main character might have
about 20 minutes of animation. We manually separated the data into
sets of similar expressions and also removed any visually bad data.
For example, a character might be off screen and is not animated,
or a character might be animated for one specific camera angle and
does not look acceptable from all possible viewing angles. Using
our method, we trained a separate model for each type of expression
that we manually labeled in the training data. To evaluate the effec-
tiveness of our method, we compared transitions synthesized with
our method to transitions generated using Motion Graphs [KGP02].
Additionally, we synthesized scripted animations off-line and cre-
ated an interactive game featuring synthesized real-time animation
using our algorithm to demonstrate the application of our method.

We used the animation data from the hero dragon character
Toothless in the feature film How to Train Your Dragon 2. This data
is sampled at 24 FPS, and 742 face rig controls are used in our al-
gorithm. Toothless’s facial rig is a multi-layered design [PHW⇤15],
which provides control ranging from coarse to fine deformations.
Figure 5 shows the layers of the face rig. There are four main lay-
ers of the face rig that involve both bones and blenshapes. First, the
bones control large, gross deformations of the mesh. Second, in-
termediate blendshapes are applied for coarse control. Third, fine-
control blendshapes are used. Finally, free-form deformations are
applied to allow custom shapes after the first three layers have been
evaluated.

To demonstrate how well our method can reuse previous ani-
mation, we use only data from this film and do not hand animate
any data specific for our applications. We identified eight expres-
sion sets: happy, grumpy, bored, curious, and neutral, roar, head
shake, and surprise. We manually labeled animations that fit into
these categories and trained a GPLVM on each one separately. The

labeling task required several hours to complete. Each model con-
tained between 100 to 800 frames of animation, and the latent space
for each model has three dimensions. We chose three dimensions
experimentally by training models with different dimensions. We
found that for our small data sets, the quality of animations synthe-
sized with models of three dimensions or higher were perceptually
similar. Therefore, we chose the smallest dimension to minimize
the number of unknown variables we solve for when training the
GPLVM. In total, we included 3745 usable frames of animation in
our training data, which is equivalent to 156 seconds of animation.

Because our method solves a problem similar to Motion Graphs
and methods based on Motion Graphs, we compare expression tran-
sitions synthesized with our method to those we synthesized using
Motion Graphs described in [KGP02]. In our method, we used on
average 12 frames to blend between two models. Therefore, we
used the same number of frames to synthesize the blends between
segments of animation using Motion Graphs for comparison. In the
accompanying video, we show transitions synthesized using both
methods. For Motion Graphs, we picked transitions between two
sets of animation by picking transitions points between animation
sequences with small distances in the rig parameter space as de-
scribed in their paper. Visually, we found that in some cases, transi-
tions synthesized using Motion Graphs appear sudden and unnatu-
ral. We found that these sudden transitions occur when the two an-
imations do not contain large movements. However, Motion Graph
blends are not noticeable when transitioning between motions con-
taining large movements. Our method, on the other hand is able
to synthesize smooth transitions between different expressions re-
gardless of the amount of motion before and after the transition.

We found that because our sets of training animation are small
and contain heterogeneous motions, the Motion Graph algorithm
was unable to find transitions with small distances going towards
or away from most animation segments. Thus, a motion graph built
on this data would use a small fraction of the data. Our method,
however, makes use of the entire data set and is capable of transi-
tioning to and from any pose.

We also evaluate our method by synthesizing scripted anima-
tions. We directly used our interface for the synthesis algorithm.
We provided control over which command is sent to the system
and when. This give the user the ability to specify poses that the
character needs to make at a scripted time. Because the anima-
tion can be computed in real-time, the user can quickly see how
changes in the script affect the animation. All of the off-line an-
imations shown in our accompanying video are synthesized with
this method. We found that scripting an animation allows for some-

Article c� 2016 Bailey, Watt, and O’Brien
Eurographics Proceedings c� 2016 The Eurographics Association.

8

Eurographics / ACM SIGGRAPH Symposium on Computer Animation (2016)
Ladislav Kavan and Chris Wojtan (Editors)

Repurposing Hand Animation for Interactive Applications

Stephen W. Bailey1,2 Martin Watt2 James F. O’Brien1

1University of California, Berkeley 2DreamWorks Animation

Figure 1: Four frames of a synthesized roar animation for Toothless the dragon

Abstract

In this paper we describe a method for automatically animating interactive characters based on an existing corpus of key-framed
hand-animation. The method learns separate low-dimensional embeddings for subsets of the hand-animation corresponding to
different semantic labels. These embeddings use the Gaussian Process Latent Variable Model to map high-dimensional rig
control parameters to a three-dimensional latent space. By using a particle model to move within one of these latent spaces, the
method can generate novel animations corresponding to the space’s semantic label. Bridges link each pose in one latent space
that is similar to a pose in another space. Animations corresponding to a transitions between semantic labels are generated by
creating animation paths that move though one latent space and traverse a bridge into another. We demonstrate this method by
using it to interactively animate a character as it plays a simple game with the user. The character is from a previously produced
animated film and the data we use for training is the data that was used to animate the character in the film. The animated
motion from the film represents an enormous investment of skillful work. Our method allows this work to be repurposed and
reused for interactively animating the familiar character from the film.

1. Introduction

Feature animation is a labor and time intensive process that results
in characters with compelling and unique personalities. Taking one
of these characters into an interactive application presents a chal-
lenge. The traditional approach is to hand animate large numbers
of motion clips which can then be evaluated in a motion graph.
This becomes expensive due to the large number of possible ac-
tions required. Even a single action can require multiple clips to
avoid obvious visual repetition when idling in a specific pose.

In this paper we repurpose the original hand animated content
from a film by using it as a training set which is then used to gen-
erate new animation in real time that can retain much of the per-
sonality and character traits of the original animation. Due to this
choice of training data, we assume that we will have tens of min-

utes of usable animation. Furthermore, because we use animation
for a film-quality character, there is a large number of rig parame-
ters that our synthesis algorithm will need to control. Thus, we use
a form of the Gaussian Process Latent Variable Model (GPLVM) to
embed the rig parameters of the animation in a lower dimensional
space, and we synthesize new animations using this model.

Our work presents a new method to scale the input data to the
GPLVM to account for the nonlinear mapping between a charac-
ter’s rig parameters and its evaluated surface mesh. Further, we
present a novel method to synthesize new animation using the
GPLVM. Our method is based on a particle simulation, and we
demonstrate its effectiveness at generating new facial animation
for a non-human character. We found that GPLVMs trained with
a few homogeneous animations produce visually better results than

Article c� 2016 Bailey, Watt, and O’Brien
Eurographics Proceedings c� 2016 The Eurographics Association.

64

16-Kinematics.key - November 16, 2016

Rib-Based Facial Animation

65

Stpehen W. Bailey, Martin Watt, and James F. O'Brien. "Repurposing Hand Animation for
Interactive Applications". In Proceedings of the ACM SIGGRAPH/Eurographics Symposium
on Computer Animation, pages 1–10, July 2016.

65

16-Kinematics.key - November 16, 2016

