

Collaborators
Adaptive Tearing and Cracking of Thin Sheets with Tobias Pfaff, Rahul Narain and Juan Miguel de Joya SIGGRAPH 2014
View-Dependent Adaptive Cloth Simulation with Woojong Koh and Rahul Narain SCA 2014
Folding and Crumpling Adaptive Sheets with Rahul Narain and Tobias Pfaff SIGGRAPH 2013
Adaptive Anisotropic Remeshing for Cloth Simulation with Rahul Narain and Armin Samii SIGGRAPH Asia 2012
2

Expected size of wrinkles $\,\propto 1/\sqrt{\text{strain}}\,$

Green strain tensor: $\mathbf{G} = \nabla \mathbf{x}^T \nabla \mathbf{x} - \mathbf{1}$

$$\varepsilon_c = (\mathbf{1} - \nabla \mathbf{x}^\mathsf{T} \nabla \mathbf{x})^+$$

Rib-Stiffening
$$\mathbf{M}_{\rm cmp} = \frac{1}{2} \left(\varepsilon_c + \sqrt[4]{\varepsilon_c^2 - \frac{k_b}{4k_s} (\mathbf{S}^\perp)^2} \right)$$

20

REMESHING REMESHING CRITERIA

Combining metric terms

Summation ends up overly conservative

$$\tilde{\mathbf{M}} = \frac{\mathbf{M}_{\text{crv}}}{\Delta r_{\text{max}}^2} + \frac{\mathbf{M}_{\text{vel}}}{\Delta v_{\text{max}}^2} + \frac{\mathbf{M}_{\text{emp}}}{c_{\text{max}}^2}$$

Find smallest enclosing disk

- generalize points to disks
 Base case is Apollonius' problem

POST-REMESHING PROJECTION

MINIMIZING STATE SPACE DISCRETIZATION ERROR

Ideal projection matches instantaneous derivatives

$$\frac{\partial E}{\partial \mathbf{x}_i} = -m_i \mathbf{a}_i$$

Solve by minimizing

$$\min_{\mathbf{X}} \left(E + \sum m_i \mathbf{a}_i \cdot (\mathbf{x}_i - \mathbf{x}_i^0) + \sum \frac{\mu}{2} \|\mathbf{x}_i - \mathbf{x}_i^0\|^2 \right)$$

Without projection With projection

30

Name	Fa	aces		Time per	frame (sec	onds)	
	Input	Mean	Integration	Strain lim.	Collision	Remeshing	Total
Kick	884	37,627	13.055	14.075	22.300	0.551	49.980
Sphere	4	11,313	4.077	3.557	1.222	0.177	9.033
Flag	97	11,710	3.103	3.559	1.353	0.428	8.443
Cylinders	32	5,267	0.684	0.625	0.455	0.050	1.814
Blue dress	112	13,149	4.028	3.656	3.811	0.196	11.691
Yellow dress	428	22,785	10.075	6.997	5.396	0.340	22.809

BENDING PLASTICITY

Crumpling Paper

SHARE	CREASES	42	2
	42		

FAILURE CRITERION

 $\begin{array}{ll} \text{Maximum principal stress} & \sigma_p > \tau \\ \textbf{But:} & \text{Discretization error and noise} \\ & \text{often ruin maximality} \end{array}$

- Averaged stress
 not maximal at crack tip
- Separation tensor
 [O'Brien and Hodgins 1999]
 depends on triangle size

FAILURE CRITERION

∂Ωι

Find maximal separating traction

$$\mathbf{q_1} = \int_{\partial\Omega_1} \sigma^+ \cdot \mathbf{n} \, dS$$
$$\mathbf{q_2} = \int_{\partial\Omega_2} \sigma^+ \cdot \mathbf{n} \, dS$$

→ Find split-plane maximizing separation

50

CODE AND DATA DISTRIBUTION	55
ARCSim: Adaptively Refining and Coarsening Simulator http://graphics.berkeley.edu/resources/ARCSim	
Berkeley Garment Library http://graphics.berkeley.edu/resources/GarmentLibrary	
· · · · · · · · · · · · · · · · · · ·	
55	