CS184 LECTURE RADIOMETRY

Kevin Wu
November 10, 2014

Material HEAVILY adapted from James O'Brien, Brandon Wang, Fu-Chung Huang, and Aayush Dawra

ADMINISTRATIVE STUFF

- Project!

TODAY

- Radiometry (Abridged): Measuring light
- Local Illumination and Raytracing were discussed in an ad hoc fashion
- Proper discussion requires proper units
- Not just pretty pictures... but correct pictures

MATCHING REALITY

Unknown

MATCHING REALITY

Cornell Box Comparison. Cornell Porgram of Computer Graphics

UNITS

Energy ($q=h f$)

- Units of Joules (J)

Light Energy ($P=\frac{d q}{d t}$)

- We actually measured power not energy
- Joules/s (J/s) = Watts (W)

Spectral Energy Density $\left(d \Phi=\frac{d P}{d \lambda}\right)$

- Intensive quantity (similar to density for mass)
- Power per unit spectrum interval
- Watts / nanometer (W/nm)
- Properly done as a function over spectrum
- Often just sampled for RGB

Often people understand S.E.D. is used and just say E

IRRADIANCE

Total light (remember, spectral energy density) striking a surface from all directions.

- Only meaningful w.r.t. a surface

$$
H=\frac{d P}{d A}=\text { Power per squared meter }=\mathrm{W} / \mathrm{m}^{2}
$$

- But really spectral energy density

$$
H=\frac{d \Phi}{d A}=\text { S.E.D. per squared meter }=\mathrm{W} / \mathrm{m}^{2} / \mathrm{nm}
$$

- Not all directions sum the same due to foreshortening.

RADIANCE EXITANCE

Total light leaving surface over all directions

- Only meaningful w.r.t. a surface

$$
E=\frac{d P}{d A}=\text { Power per squared meter }=\mathrm{W} / \mathrm{m}^{2}
$$

- But really spectral energy density

$$
E=\frac{d \Phi}{d A}=\text { S.E.D. per squared meter }=\mathrm{W} / \mathrm{m}^{2} / \mathrm{nm}
$$

- Also called Radiosity
- Sum over all directions \nRightarrow same in all directions

SUMMARY

- Energy
$q=h f$
- Light Energy (Power)
$P=\frac{d q}{d t}$
- Spectral Energy Density:

$$
d \Phi=\frac{d P}{d \lambda}
$$

- Irradiance $H=\frac{d \Phi}{d A}$
- Radiance Exitance/Radiosity $E=\frac{d \Phi}{d A}$

SOLID ANGLES

- Angle $\theta=\frac{l}{r}$
\Rightarrow circle has 2π radians
- Solid angle $\Omega=\frac{A}{R^{2}}$

\Rightarrow sphere has 4π steradians

DIFFERENTIAL SOLID ANGLES

DIFFERENTIAL SOLID ANGLES

DIFFERENTIAL SOLID ANGLES

$$
\begin{aligned}
d \omega & =\sin \theta d \theta d \phi \\
\Omega & =\int_{S^{2}} d \omega \\
& =\int_{0}^{\pi} \int_{0}^{2 \pi} \sin \theta d \theta d \phi \\
& =\int_{-1}^{1} \int_{0}^{2 \pi} d \cos \theta d \phi \\
& =4 \pi
\end{aligned}
$$

A solid angle "subtends" a particular area on a sphere.

- Just like for angles in 2D, given a particular axis, defines a

RADIANCE

Light energy passing though a point in space within a given solid angle

- Energy per steradian per square meter (W/m²/sr)
- S.E.D. per steradian per square meter (W/m²/sr/nm)

Constant along straight lines in free space

- Area of surface being sampled is proportional to distance and light inversely proportional to squared distance.

RADIANCE

Think of it as irradiance or radiosity from a specific direction (quantified by steradians.
Suppose a measuring device for this looks like:

The measured radiance =

$$
\frac{d H}{d \sigma}=\frac{d q}{\Delta A d \sigma d t d \lambda}=\frac{\text { Energy }}{\text { Area } \cdot \text { Direction } \cdot \text { Time } \cdot \text { Wavelengtl }}
$$

RADIANCE

Now suppose our cone device is tilted so the area we're measuring is not flat!

The measured radiance $=$

$$
\frac{d H}{d \sigma}=\frac{d q}{\Delta A d \sigma d t d \lambda}=\frac{d q}{d A \cos (\theta) d \sigma d t d \lambda}=\frac{d H}{d \sigma \cos (\theta)}
$$

RADIANCE

Near surfaces, differentiate between

- Radiance from the surface (surface radiance)
- Radiance from other things (field radiance)

LIGHT FIELDS

Radiance at every point in space, direction, and frequency: 6D function
Collapse frequency to RGB, and assume free space: 4D function Sample and record it over some volume

LIGHT FIELDS

LIGHT FIELDS

Levoy and Hanrahan,SIGGRAPH 1996

LIGHT FIELDS

Michelangelo's Statue of Night. From the Digital Michelangelo Project

COMPUTING IRRADIANCE

Given a field radiance defined as:

$$
L_{f}(\vec{k})=\frac{\Delta H}{\Delta \sigma \cos (\theta)}
$$

We can derive irradiance by integrating field radiance over all directions:

$$
\begin{gathered}
H=\int_{\Omega} L_{f}(\vec{k}) \cos (\theta) d \sigma \\
H=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} L_{f}(\theta, \phi) \cos (\theta) \sin (\phi) d \theta d \phi
\end{gathered}
$$

You can derive all other radiometric quantities from radiance! This is why it's considered the fundamental quantity.

REVISITING THE BRDF

How much light from direction k_{i} goes out direction k_{o}.
Earlier, our phong shading model approximated this quantity.

REVISITING THE BRDF

How much light from direction k_{i} goes out in direction k_{o} Now we can talk about units:

- BRDF is ratio of surface radiance to the foreshortened field radiance

$$
\rho\left(\mathbf{k}_{i}, \mathbf{k}_{o}\right)=\frac{L_{s}\left(\mathbf{k}_{o}\right)}{L_{f}\left(\mathbf{k}_{i}\right) \cos \left(\theta_{i}\right)}
$$

We left out frequency dependance here...
Also note for perfect Lambertian reflector with constant BRDF $\rho=1 / \pi$

Note it would be more appropriate to define BRDF as:

$$
\rho\left(k_{i}, k_{o}\right)=\frac{d L_{s}\left(k_{o}\right)}{L_{f}\left(k_{i}\right) \cos \left(\theta_{i}\right) d \sigma_{i}}
$$

THE RENDERING EQUATION (TRANSPORT EQUATION)

Total light going out in some direction is given by an integral over all incoming directions:

$$
\begin{gathered}
\rho\left(k_{i}, k_{o}\right)=\frac{d L_{s}\left(k_{o}\right)}{L_{f}\left(k_{i}\right) \cos \left(\theta_{i}\right) d \sigma_{i}} \\
d L_{S}\left(k_{o}\right)=\rho\left(k_{i}, k_{o}\right) L_{f}\left(k_{i}\right) \cos \left(\theta_{i}\right) d \sigma_{i} \\
L_{S}\left(k_{o}\right)=\int_{\Omega} \rho\left(k_{i}, k_{o}\right) L_{f}\left(k_{i}\right) \cos \left(\theta_{i}\right) d \sigma_{i}
\end{gathered}
$$

- Note this is recursive, L_{f} is another object's L_{s}

THE RENDERING EQUATION

$L_{s}\left(k_{o}\right)=\int_{\Omega} \rho\left(k_{i}, k_{o}\right) L_{f}\left(k_{i}\right) \cos \left(\theta_{i}\right) d \sigma_{i}$
Now, let's rewrite in terms of surface radiances ONLY

$$
\begin{gathered}
d A^{\prime} \cos (\theta)=d \sigma\left\|\vec{x}-\vec{x}^{\prime}\right\|^{2} \\
d \sigma=\frac{d A^{\prime} \cos \left(\theta^{\prime}\right)}{\left\|\vec{x}-\vec{x}^{\prime}\right\|^{2}}
\end{gathered}
$$

Light Paths

Many paths from light to eye
Characterize by the types of bounces

- Begin at light
- End at eye
- "Specular" bounces
- "Diffuse" bounces

Light Paths

Describe paths using strings

- LDE, LDSE, LSE, etc.

Describe types of paths with regular expressions

- L\{D|S\}*E \longleftarrow Visible paths
- L\{D|S\}S*E « Standard raytracing
- L\{D|S\}E « Local illumination
-LD*E \longleftarrow Radiosity method (have not talked about yet)

PROJECT SUMMARY

PROIECT SUMMARY

You're given a file with a bunch of patches

2	0.00	0.00	0.33	0.00	0.00	0.66	0.00	0.00	1.00	0.00	0.00
0.00	0.00	0.33	0.33	0.00	0.66	0.33	0.00	1.00	0.33	0.00	
0.00	0.33	0.00	0.30								
0.00	0.66	0.00	0.33	0.66	0.00	0.66	0.66	0.00	1.00	0.66	0.00
0.00	1.00	0.00	0.33	1.00	0.00	0.66	1.00	0.00	1.00	1.00	0.00
0.00	0.00	0.00	0.33	0.00	2.00	0.66	0.00	2.00	1.00	0.00	0.00
0.00	0.33	0.00	0.33	0.33	2.00	0.66	0.33	2.00	1.00	0.33	0.00
0.00	0.66	0.00	0.33	0.66	2.00	0.66	0.66	2.00	1.00	0.66	0.00
0.00	1.00	0.00	0.33	1.00	2.00	0.66	1.00	2.00	1.00	1.00	0.00

PROIECT SUMMARY

You render it via OpenGL

