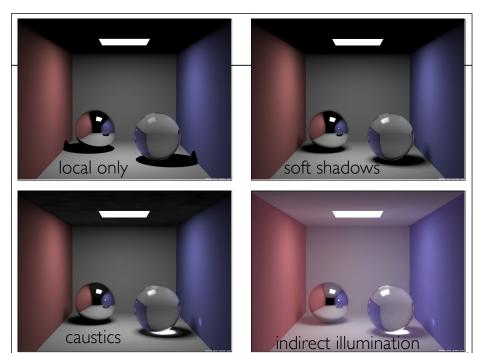
CS-184: Computer Graphics

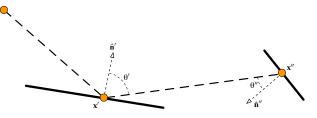
Lecture #23: Global Illumination

Prof. James O'Brien University of California, Berkeley


V2013-F-23-1.0

-

Today


- The Rendering Equation
- Radiosity Method
- Photon Mapping
- Ambient Occlusion

3

The Rendering Equation

The light shining on x from x is equal to:

- the emitted light from x' toward x, plus
- for each bit of surface in the scene, how much light shines from that bit onto x' and is reflected toward x, scaled appropriately

$$\left| L_s(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E(\mathbf{x}, \mathbf{x}') + \int_{S} \rho_{x'}(\mathbf{x}, \mathbf{x}'') L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right] \right|$$

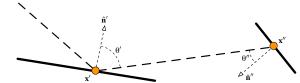
The Rendering Equation

$$L_s(\mathbf{x},\mathbf{x}') = \delta(\mathbf{x},\mathbf{x}') \left[E(\mathbf{x},\mathbf{x}') + \int_S \rho_{x'}(\mathbf{x},\mathbf{x}'') L_s(\mathbf{x}',\mathbf{x}'') \frac{\cos(\theta')\cos(\theta'')}{||\mathbf{x}'-\mathbf{x}''||^2} \mathrm{d}\mathbf{x}'' \right]$$
 sum over every bit of surface in the scene scale at the scale at the

5

Radiosity

- Assume all materials are perfectly Lambertian (diffuse only, no specularities)
- Removes all dependance on directions
- Reduces dimensionality of lightfield
- Allows a FEM solution (break up into chunks)
- Can also relax assumption slightly...

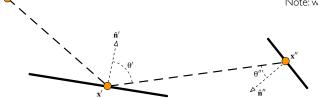

7

Assume Lambertian

$$\left| L_s(\mathbf{x}, \mathbf{x}') = \delta(\mathbf{x}, \mathbf{x}') \left[E(\mathbf{x}, \mathbf{x}') + \int_S \rho_{x'}(\mathbf{x}, \mathbf{x}'') L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right] \right|$$

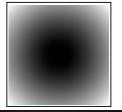
$$L_s(\mathbf{x}, \mathbf{x}') = \frac{\delta(\mathbf{x}, \mathbf{x}')}{\hbar} \left[E_{x'} + \int_{S} \rho_{x'} L_s(\mathbf{x}', \mathbf{x}'') \frac{\cos(\theta') \cos(\theta'')}{||\mathbf{x}' - \mathbf{x}''||^2} d\mathbf{x}'' \right]$$

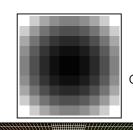
 ackslash Only term dependent on ${f x}$


Monday, November 25, 13

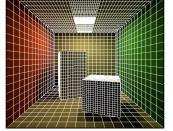
Rewrite in Terms of Radiosity

$$L_{s}(\mathbf{x},\mathbf{x}') = \delta(\mathbf{x},\mathbf{x}') \left[E_{x'} + \int_{S} \rho_{x'} L_{s}(\mathbf{x}',\mathbf{x}'') \frac{\cos(\theta')\cos(\theta'')}{||\mathbf{x}'-\mathbf{x}''||^{2}} d\mathbf{x}'' \right]$$


$$H_{x'} = E_{x'} + \rho_{x'} \int_{S} \delta(\mathbf{x}', \mathbf{x}'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi} d\mathbf{x}''$$


Note: we changed defin of E here.

Q


Discretize into Patches

Piece-wise constant patches

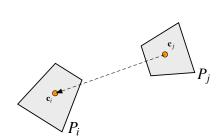
Example mesh for Cornell Box by Mark Schmelzenbach

Discretize into Patches

The Candlestick Theater, Mark Mack Architects.

11

Discretize into Patches



The Candlestick Theater, Mark Mack Architects.

Rewrite in Terms of Patches

$$H_{x'} = E_{x'} + \rho_{x'} \int_{S} \delta(\mathbf{x}', \mathbf{x}'') \frac{H_{x''} \cos(\theta') \cos(\theta'')}{2\pi} d\mathbf{x}''$$

$$H_i = E_i + \rho_i \sum_j H_{_{\!J}}$$

Form factor from j to i, $F_{ij} \rightarrow$

Example of a rough approximation:

$$F_{ij} \approx \delta_{ij} \frac{\cos(\theta_i)\cos(\theta_j)}{2\pi ||\mathbf{c}_i - \mathbf{c}_j||^2} A_j$$

Radiosity Method

- Given the E_i and ρ_i
- First compute F_{ij}
- Then solve $H_i = E_i + \rho_i \sum_i H_j F_{ij}$
- Comments:
 - The matrix **A** is typically very large
 - It is also sparse (why?)
 - Should be solved with an iterative method
 - e.g.: Jacobi or Gauss-Seidel
 - · Solution is view independent

1/			

Radiosity Method

- Given the light emitted and surface properties
- First compute F_{ij} , form factors between patches
- Then solve a linear system to balance energy between all patches
- Comments:
 - The system is very large
 - It is also sparse (why?)
 - · Should be solved with an iterative method
 - e.g.: Jacobi or Gauss-Seidel
 - · Solution is view independent

15

Progressive Radiosity

ullet If magnitude of eigenvalues of $A {<} 1$

$$(\mathbf{I} - \mathbf{A})^{-1} = \mathbf{I} + \mathbf{A} + \mathbf{A}^2 + \mathbf{A}^3 + \cdots$$

- True for form-factor matrices
- Use Gauss-Seidel-like iteration but reorder by priority

$$\mathbf{h}^{k+1} = \mathbf{h}^k + \mathbf{u}^{k+1}$$

$$\mathbf{u}^{k+1} = \mathbf{A} \mathbf{u}^k$$

$$\mathbf{h}^0 = 0 \quad \mathbf{u}^0 = \mathbf{e}$$

Idea: let important sources of light energy emit first, maybe don't even bother with dark things

Southwell Relaxation

Progressive Radiosity

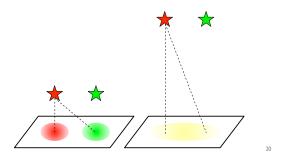
17

Touchup

- Each patch will have a constant color
 - Smooth solution (e.g. average to vertices)

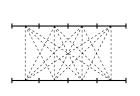
Example mesh for Cornell Box by Mark Schmelzenbach

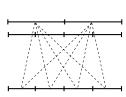
Does not match but you get the idea...

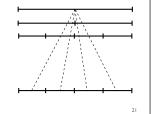

Other Things

- Each patch will have a constant color
- Smooth solution (e.g. average to vertices)
- No specular reflection
 - Add Phong specular term or raytraced specular reflection
- Grid artifacts
- Be clever with grid...

19

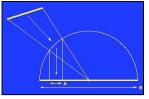

Hierarchical Radiosity


- Light smoothes with distance
 - Compare $1/h^2$ with $1/(h^2+d^2)$ as h gets large

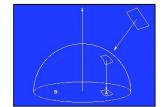


Hierarchical Radiosity

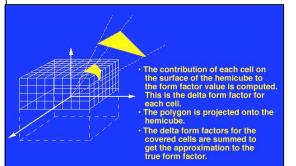
- Light smoothes with distance
 - Compare $1/h^2$ with $1/(h^2+d^2)$ as h gets large
- Group patches into hierarchy
- Far interactions use lower-res form factors



21

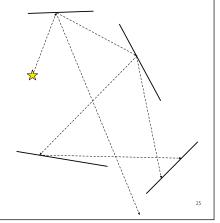

Computing Form Factors

• Form factors have a geometric meaning



Computing Form Factors

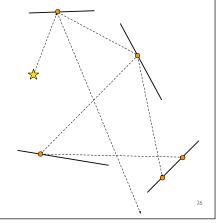
- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion


Images from SIGGRAPH 93 Education Slide Set by Stephen Spencer

23

Computing Form Factors

- Form factors have a geometric meaning
- "Hemicube" algorithm uses regular scan conversion
- Also computed by ray-based sampling
- In practice, computing form factors is the bottleneck


- Lights cast "photons" into environment
 - Cast in random directions
 - Trace into environment
 - Store records at intersections

25

Photon Mapping

- Lights cast "photons" into environment
 - Cast in random directions
 - Trace into environment
 - Store records at intersections
 - With KD-Trees...

Comparison

Ray Tracing

Ray Tracing w/ Photon Map

Catherine Bendebury and Jonathan Michaels
CS 184 Spring 2005

27

Photon Mapping

A ray traced image

Note:
Dark shadows
Unlit corners
Nice reflections

Image by Per Christensen

Image by Per Christensen

Raw photons

Note: Noisy Sparse

29

Photon Mapping

Image by Per Christensen

Interpolated Photons

Note: Still noisy Biased

Image by Per Christensen

Interpolated Photons (multiplied by diffuse)

Note: Still noisy Biased

31

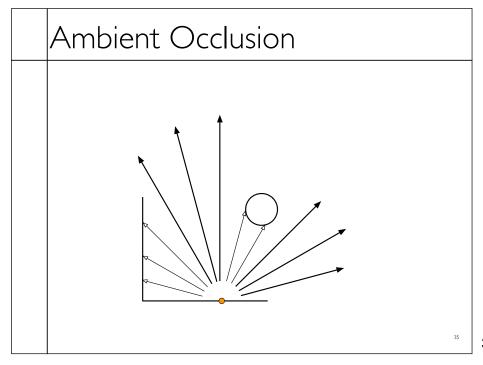
Photon Mapping

- Final Gather
 - Ray trace scene
 - Direct and specular rays as normal
 - Diffuse rays traced into photon map
 - · Diffuse reflection smoothes noise

mage by Per Christensen

Final Image

Note:


Not noisy Nice lighting Reflections May still be biased

Final gather often bottleneck...

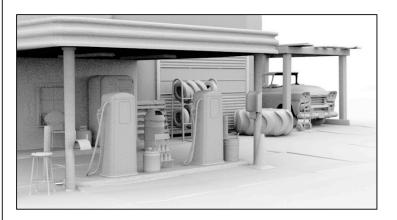
33

Ambient Occlusion

- A "hack" to create more realistic ambient illumination cheaply
- Assume light from everywhere is partially blocked by local objects
 - At a point on the surface cast rays at random
 - Ambient term is proportional to percent of rays that hit nothing
 - · Weight average by cosine of angle with normal
 - Take into account how far before occluded

35

Ambient Occlusion



Diffuse Only

Ambient Occlusion

Combined

Ambient Occlusion

nVidia Gelato Demo Image