

2

Image Manipulation

Iranian missile test, 2008

3

Sunday, December 1, 13

Image ManipulationImage Manipula

<section-header><complex-block>

6

5

Historical Image Manipulation

Image manipulation as old as photography
Primitive techniques work surprisingly well

> Library of Congress archive photo of Abraham Lincoln 1826

8

Image Forensics

Detect forgeries

Detect signs of manipulation •Prove image was modified in some way Cannot prove an image unmodified

Suite of detection tools

Individual methods can be countered

Individual tools may not apply in all cases

Each additional method makes forgery harder

Advantage: Forgers

People:

Good at understanding scene content
Poor at noticing many types of inconsistencies
Simple manipulation methods work well
New manipulation methods being developed

9

Advantage: Forgers

People:

Good at understanding scene content
Poor at noticing many types of inconsistencies
Simple manipulation methods work well
New manipulation methods being developed
Something called "Photoshop" is a particular difficulty...

Image Forensics

Low-level methods

Examples:

- Quantization tables
- Chromatic aberration
- Compression artifacts

Not tied to scene content

Easy to apply Easy to fool (informed attacker) Not robust to common operations

Geometric methods

Content inconsistencies
Require human annotation
Computer analysis
Examples:
Shadows
Lighting
Reflections

13

Geometric Image Forensics

Not same as Computer Vision

User involved in loop Only looking for inconsistencies only

Don't need to fully extract scene content

Reflection Vanishing Point

Real Photograph

21

Reflection Vanishing Point

Altered Photograph

Examples

29

30

		<u> </u>

38

Sunday, December 1, 13

46

Sunday, December 1, 13

50

Center of Projection

COP determined by 3 orthogonal vanishing points System of quadratic equations $(\mathbf{C} - \mathbf{V}_1) \cdot (\mathbf{C} - \mathbf{V}_2) = 0$ $(\mathbf{C} - \mathbf{V}_2) \cdot (\mathbf{C} - \mathbf{V}_3) = 0$ $(\mathbf{C} - \mathbf{V}_3) \cdot (\mathbf{C} - \mathbf{V}_1) = 0$

Easy to solve by change of variables

Center of Projection

Building and other structuresReflectors with rectangular frames

Frames: two orthogonal vanishing points
Reflected features: third vanishing point
Compare COP from separate elements in the image

Sunday, December 1, 13

59

60

Center of Projection

Computation is unstable Step 1: intersect [nearly parallel] lines Step 2: intersect spheres

64

Center of Projection

Altered Photograph

65

66

68

Summary

Geometric Image Forensics

- Human annotation
- Computer analysis
- Part of "analysis toolbox"
- Not always applicable
- •Together make forgery more difficult
- Constrain image content

71

Big Data Bandwagon

Learn to automatically detect images that are *likely* to be forgeries?

Ignore minor retouching?

Can we quantify "artificiality" in some way?

72

Relevant Papers

Eric Kee, James F. O'Brien, and Hany Farid. "Exposing Photo Manipulation with Inconsistent Shadows". ACM Transactions on Graphics, 32(4):28:1–12, September 2013. Presented at SIGGRAPH 2013. <u>http://graphics.berkeley.edu/papers/Kee-EPM-2013-09</u>

Valentina Conotter, James F. O'Brien, and Hany Farid. "Exposing Digital Forgeries in Ballistic Motion". IEEE Transactions on Information Forensics and Security, 7(1):283 – 296, February 2012. http://graphics.berkeley.edu/papers/Conotter-EDF-2012-02

James F. O'Brien and Hany Farid. "Exposing Photo Manipulation with Inconsistent Reflections". ACM Transactions on Graphics, 31(1):4:1–11, January 2012. Presented at SIGGRAPH 2012. http://graphics.berkeley.edu/papers/Obrien-EPM-2012-01

74