
\qquad

Communication by Images

Image Manipulation

\qquad

\qquad
\qquad
\qquad
\qquad

Iranian missile test, 2008

Image Manipulation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Economist manipulates image of Obama, 2010

[^0]
Image Manipulation

Fabricated image of John Kerry and Jane Fonda, 2004

Video Manipulation

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Flying Birdman Hoax, 2012

Historical Image Manipulation

Image manipulation as old as photography Primitive techniques work surprisingly well

Library of Congress archive photo of Abraham Lincoln
 1826

7

Historical Image Manipulation

8
Sunday, December 1, 13

Image Forensics

Detect forgeries

Detect signs of manipulation
Prove image was modified in some way
Cannot prove an image unmodified

Suite of detection tools

- Individual methods can be countered

Individual tools may not apply in all cases

- Each additional method makes forgery harder

Advantage: Forgers

People:
Good at understanding scene content
-Poor at noticing many types of inconsistencies
Simple manipulation methods work well
New manipulation methods being developed
\qquad
\qquad

Example Inconsistency

Selected as correct: 62.1\%

Selected as correct: 50.1\%

Advantage: Forgers

People:

Good at understanding scene content
Poor at noticing many types of inconsistencies
Simple manipulation methods work well
New manipulation methods being developed
Something called "Photoshop" is a particular difficulty...

Image Forensics

Low-level methods

'Examples:
Quantization tables

- Chromatic aberration

Compression artifacts
Not tied to scene content
Easy to apply

- Easy to fool (informed attacker)
- Not robust to common operations

Geometric methods
-Content inconsistencies

- Require human annotation
- Computer analysis
-Examples:
-Shadows
- Lighting
-Reflections

Geometric Image Forensics

Not same as Computer Vision

User involved in loop
Only looking for inconsistencies only
Don't need to fully extract scene content
都
\qquad
\qquad
\qquad
\qquad
\qquad
\square
\qquad

[^1]
Basic Mirror Geometry

Basic Mirror Geometry

Basic Mirror Geometry

Basic Mirror Geometry

[^2]
Basic Mirror Geometry

Bundle of parallel lines

In original image they must
converge to a common
vanishing point.

(Possibly at infinity)

19

Reflection Vanishing Point

Real Photograph

[^3]
Reflection Vanishing Point

Real Photograph

Reflection Vanishing Point

Altered Photograph

Sunday, December 1, 13

Reflection Vanishing Point

Altered Photograph

Examples

\qquad

Examples

Examples

25

Examples

Examples

Examples

\qquad

33

\qquad
Sunday, December 1, 13

\qquad

36
Sunday, December 1, 13

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
39

\qquad

42

$$
\mathbf{n} \cdot \mathbf{x}-\mathbf{n} \cdot \mathbf{p} \geq 0
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

$$
\left[\begin{array}{l}
\mathbf{n}_{1} \\
\mathbf{n}_{2}
\end{array}\right] \mathbf{x}-\left[\begin{array}{l}
\mathbf{n}_{1} \cdot \mathbf{p} \\
\mathbf{n}_{2} \cdot \mathbf{p}
\end{array}\right] \succeq \mathbf{0}
$$

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
$\mathbf{N x}-\mathbf{P} \succeq \mathbf{0}$

\qquad
\square
\qquad
\square
\qquad
\square
\qquad
\qquad
\qquad

52
Sunday, December 1, 13

Center of Projection

COP determined by 3 orthogonal vanishing points

\qquad

Center of Projection

COP determined by 3 orthogonal vanishing points

Center of Projection

COP determined by 3 orthogonal vanishing points

[^4]
Center of Projection

COP determined by 3 orthogonal vanishing points

$$
\begin{aligned}
& \left(\mathbf{C}-\mathbf{V}_{1}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{2}\right)=0 \\
& \left(\mathbf{C}-\mathbf{V}_{2}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{3}\right)=0 \\
& \left(\mathbf{C}-\mathbf{V}_{3}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{1}\right)=0
\end{aligned}
$$

\qquad

Center of Projection

COP determined by 3 orthogonal vanishing points

$$
\begin{aligned}
& \left(\mathbf{C}-\mathbf{V}_{1}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{2}\right)=0 \\
& \left(\mathbf{C}-\mathbf{V}_{2}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{3}\right)=0 \\
& \left(\mathbf{C}-\mathbf{V}_{3}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{1}\right)=0
\end{aligned}
$$

\qquad

Center of Projection

COP determined by 3 orthogonal vanishing points
System of quadratic equations
$\left(\mathbf{C}-\mathbf{V}_{1}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{2}\right)=0$
$\left(\mathbf{C}-\mathbf{V}_{2}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{3}\right)=0$
$\left(\mathbf{C}-\mathbf{V}_{3}\right) \cdot\left(\mathbf{C}-\mathbf{V}_{1}\right)=0$
Easy to solve by change of variables

Center of Projection

60

[^5]
Center of Projection

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Center of Projection

Center of Projection

Error sources:
\(\left.\begin{array}{l}Image resolution

User pointing accuracy

Features from different perspectives\end{array}\right] \rightarrow\)| Specify regions, |
| :--- |
| not points |

COP calculation magnifies error
Structure in instability
\qquad

63

Center of Projection

Real Photograph

Sunday, December 1, 13

Center of Projection

Altered Photograph

65

Center of Projection

Sunday, December 1, 13

CoP from Faces

CoP from Faces

CoP from Faces
\qquad

69

CoP from Faces

Sunday, December 1, 13

Summary

Geometric Image Forensics
 Human annotation
 Computer analysis
 Part of "analysis toolbox"
 Not always applicable
 - Together make forgery more difficult
 Constrain image content

Big Data Bandwagon

Learn to automatically detect images that are likely to be forgeries?
 Ignore minor retouching?
 Can we quantify "artificiality" in some way?

Thank You

\qquad

Relevant Papers

- Eric Kee, James F. O'Brien, and Hany Farid. "Exposing Photo Manipulation with Inconsistent Shadows". ACM Transactions on Graphics, 32(4):28:1-12, September 2013. Presented at SIGGRAPH 2013. http://graphics.berkeley.edu/papers/Kee-EPM-2013-09

Valentina Conotter, James F. O'Brien, and Hany Farid. "Exposing Digital Forgeries in Ballistic Motion". IEEE Transactions on Information Forensics and Security, 7(1):283-296, February 2012. http://graphics.berkeley.edu/papers/Conotter-EDF-2012-02

James F. O'Brien and Hany Farid. "Exposing Photo Manipulation with Inconsistent Reflections". ACM Transactions on Graphics, 31(1):4:1-11, January 2012. Presented at SIGGRAPH 2012. http://graphics.berkeley.edu/papers/Obrien-EPM-2012-01
\qquad

Sunday, December 1, 13

[^0]: Sunday, December 1, 13

[^1]: Sunday, December 1, 13

[^2]: Sunday, December 1, 13

[^3]: Sunday, December 1, 13

[^4]: Sunday, December 1, 13

[^5]: Sunday, December 1, 13

