CS-I 84: Computer Graphics

Lecture 22: Radiometry

James O'Brien
University of California, Berkeley
\qquad
\qquad
v2013:22:10
\qquad

Today

Radiometry: measuring light

- Local Illumination and Raytracing were discussed in an ad hoc fashion
- Proper discussion requires proper units
- Not just pretty pictures... but correct pictures
\qquad

Matching Reality

\qquad
\qquad
3

Monday, November 25, 13

Units

Light energy

- Really power not energy is what we measure
- Joules / second (J/s) = Watts (W)

Spectral energy density

- Power per unit spectrum interval
- Watts / nano-meter (W/nm)
- Properly done as function over spectrum
- Often just sampled for RGB

Often we assume people know we're talking about S.E.D. and just say E...
\qquad

Irradiance

Total light striking surface from all directions

- Only meaningful w.r.t. a surface
- Power per square meter $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
- Really S.E.D. per square meter ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{nm}$)
- Not all directions sum the same because of foreshortening

Radiant Exitance

Total light leaving surface over all directions

- Only meaningful w.r.t. a surface
- Power per square meter $\left(\mathrm{W} / \mathrm{m}^{2}\right)$
- Really S.E.D. per square meter (W/m²/nm)
- Also called Radiosity
- Sum over all directions \Rightarrow same in all directions

Solid Angles

Regular angles measured in radians [$0 . .2 \pi$]

- Measured by arc-length on unit circle

Solid angles measured in steradians [0..4 4$]$

- Measured by area on unit sphere
- Not necessarily little round pieces...

Angles and Solid Angles

Angle $\theta=\frac{l}{r}$

Solid angle $\Omega=\frac{A}{R^{2}}$
\Rightarrow sphere has 4π steradians

Differential Solid Angles

\qquad

Differential Solid Angles

Differential Solid Angles

Radiance

Light energy passing though a point in space within a given solid angle

- Energy per steradian per square meter ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr}$)
- S.E.D. per steradian per square meter ($\mathrm{W} / \mathrm{m}^{2} / \mathrm{sr} / \mathrm{nm}$)

Constant along straight lines in free space

- Area of surface being sampled is proportional to distance and light inversely proportional to squared distance

Radiance

Near surfaces, differentiate between

- Radiance from the surface (surface radiance)
- Radiance from other things (field radiance)
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Light Fields

Radiance at every point in space, direction, and frequency: 6D function Collapse frequency to RGB, and assume free space: 4D function Sample and record it over some volume
\qquad

Light Fields

Levoy and Hanrahan, SIGGRAPH 1996
Monday, November 25, 13

Light Fields

Light Fields

Computing Irradiance

Integrate incoming radiance (field radiance) over all direction

- Take into account foreshortening
\qquad
\qquad

$$
\begin{array}{ll}
H=\int_{\Omega} L_{f}(\mathbf{k}) \cos (\theta) \mathrm{d} \sigma & \searrow \mathrm{l} / \mathrm{L} / \\
H=\int_{0}^{2 \pi} \int_{0}^{\pi / 2} L_{f}(\theta, \phi) \cos (\theta) \sin (\theta) \mathrm{d} \theta \mathrm{~d} \phi
\end{array}
$$

\qquad

Revisiting The BRDF

How much light from direction k_{i} goes out in direction k_{o} Now we can talk about units:

- BRDF is ratio of surface radiance to the foreshortened field radiance
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Monday, November 25, 13

The Rendering Equation

Total light going out in some direction is given by an integral over all incoming directions:

$$
L_{s}\left(\mathbf{k}_{o}\right)=\int_{\Omega} \rho\left(\mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{f}\left(\mathbf{k}_{i}\right) \cos \left(\theta_{i}\right) \mathrm{d} \sigma_{i}
$$

- Note, this is recursive ($\mathrm{my} L_{f}$ is another's L_{s})

The Rendering Equation

$$
L_{s}\left(\mathbf{k}_{o}\right)=\int_{\Omega} \rho\left(\mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{f}\left(\mathbf{k}_{i}\right) \cos \left(\theta_{i}\right) \mathrm{d} \sigma_{i}
$$

Rewrite explicitly in terms of surface radiances only

$$
L_{f}\left(\mathbf{k}_{i}\right)=L_{s}\left(-\mathbf{k}_{i}\right) \quad \Delta \sigma_{i}=\frac{\Delta A^{\prime} \cos \left(\theta^{\prime}\right)}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}}
$$

$$
\begin{aligned}
& L_{s}\left(\mathbf{x}, \mathbf{k}_{o}\right)=\int_{x^{\prime} \text { visible to } x} \frac{\rho\left(\mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \cos \left(\theta_{i}\right) \cos \left(\theta^{\prime}\right)}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}} \mathrm{~d} \mathbf{A}^{\prime} \\
& L_{s}\left(\mathbf{x}, \mathbf{k}_{o}\right)=\int_{\text {all } x^{\prime}} \frac{\rho\left(\mathbf{k}_{i}, \mathbf{k}_{o}\right) L_{s}\left(\mathbf{x}^{\prime}, \mathbf{x}-\mathbf{x}^{\prime}\right) \delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right) \cos \left(\theta_{i}\right) \cos \left(\theta^{\prime}\right)}{\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}} \mathrm{~d} \mathbf{A}^{\prime} \\
& \delta\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left\{\begin{array}{l}
1 \text { if } \mathbf{x} \text { and } \mathbf{x}^{\prime} \text { are mutually visible } \\
0 \text { otherwise }
\end{array}\right.
\end{aligned}
$$

Light Paths

Many paths from light to eye

Characterize by the types of bounces

- Begin at light
- End at eye
- "Specular" bounces
- "Diffuse" bounces

23

Light Paths

Describe paths using strings

- LDE, LDSE, LSE, etc.

Describe types of paths with regular expressions

- $\mathrm{L}\{\mathrm{D} \mid \mathrm{S}\}^{*} \mathrm{E} \longleftarrow$ Visible paths
- L\{D|S\}S*E ఒ Standard raytracing
- $\mathrm{L}\{\mathrm{D} \mid \mathrm{S}\} \mathrm{E}$ L Local illumination
-LD*E « Radiosity method
(have not talked about yet)
\qquad

