\sim		\sim		\sim	
(Σ_{-})	184 [.]	$(\circ m)$	nuter.	(ran	hics
\bigcirc			pacer	Or up	inc5

Lecture #19: Spring and Mass systems

Prof. James O'Brien University of California, Berkeley v2013-5-19-10

Today
• Spring and Mass systems
Distance springsSpring dampersEdge springs

2

2

3

Walking Mannequin

Huamin Wang, Ravi Ramamoorthi, and James F. O'Brien. "Data-Driven Elastic Models for Cloth: Modeling and Measurement". ACM Transactions on Graphics, 30(4):71:1–11, July 2011. Proceedings of ACM SIGGRAPH 2011, Vancouver, BC Canada.

A Simple Spring

• Ideal **zero**-length spring

$$- \qquad \mathbf{f}_{a \rightarrow b} = k_s (\mathbf{b} - \mathbf{a})$$

• Force pulls points together
$$oldsymbol{f}_{b
ightarrow a} = - oldsymbol{f}_{a
ightarrow b}$$

• Strength proportional to distance

5

Wednesday, November 13, 13

A Simple Spring

• Energy potential: kinetic **vs** elastic

$$E = 1/2 k_{S}(\boldsymbol{b} - \boldsymbol{a}) \cdot (\boldsymbol{b} - \boldsymbol{a})$$

$$E = 1/2 m(\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$

$$-\mathbf{W} - \mathbf{A}$$

Wednesday, November 13, 13

Comments on Springs

- Springs with zero rest length are linear
- Springs with non-zero rest length are nonliner
- Force *magnitude* linear w/ discplacement (from rest length)
- Force direction is non-linear
- Singularity at

 $||\boldsymbol{b} - \boldsymbol{a}|| = 0$

9

10

Damping

• "Stiffness proportional" damping

-WW-
$$\boldsymbol{f}_a = -k_d \frac{\boldsymbol{b} - \boldsymbol{a}}{||\boldsymbol{b} - \boldsymbol{a}||^2} (\boldsymbol{b} - \boldsymbol{a}) \cdot (\dot{\boldsymbol{b}} - \dot{\boldsymbol{a}})$$

- Behaves viscous drag on change in spring length
- Consider a pair of masses connected by a spring
 - How to model rusty vs oiled spring
 - Should internal damping slow group motion of the pair?

11

Ш

Wednesday, November 13, 13

Spring Constants

- ullet Constant $k_{\mathcal{S}}$ gives inconsistent results with different discretizations
- Change in length is not what we want to measure
- Strain: change in length as fraction of original length

$$\epsilon = \frac{\Delta l}{l_0} \quad \text{Nice and simple for ID...}$$

Structures from Springs

This structure will not resist shearing This structure will not resist outof-plane bending either...

15

Wednesday, November 13, 13

Structures from Springs

• They behave like what they are (obviously!)

This stru Less bias Interfere This stru out-of-p

This structure will resist shearing Less bias Interference between spring sets

This structure still will not resist out-of-plane bending

17

Wednesday, November 13, 13

Strain Limiting	
Bunny Hollow Triangle Mesh 59K Elements	
Huamin Wang, James F. O'Brien, and Ravi Ramamoorthi. "Multi-Resolution Isotropic Strain Limiting". In Proceedings of ACM SIGGRAPH Asia 2010, pages 160:1–10, December 2010.	21

Wednesday, November 13, 13