
CS-184: Computer Graphics
Lecture  #18: Physically Based Animation Intro

Prof. James O’Brien
University of California, Berkeley

V2013-F-18-1.0

2

Today

• Introduction to Simulation
• Basic particle systems
• Time integration (simple version)

1

2
Tuesday, November 5, 13



3

• Generate motion of objects using numerical simulation 
methods
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Figure 8: An explosion under an immobile arch.

Figure 9: An explosion between a group of immobile pillars.
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The task of specifying the motion of even a simple animated object, like
a bouncing ball, is surprisingly difficult. In part, the task is difficult because
humans are very skilled at observing movement and quickly detect motion that is
unnatural or implausible. Additionally, the motion of many objects is complex
and specifying their movement requires generating a great deal of data. For
example, cloth can bend and twist in a wide variety of ways, and the breaking
bunny statue shown in Figure 1.a involves many hundreds of individual shards.

Three primary techniques are used to generate synthetic motion: keyfram-

(a)

(b)

Figure 1: These images show the results of using our technique to simulate the
behavior of (a) a hollow, ceramic bunny as it is stuck by a heavy, fast-moving
weight, and (b) a slab of simulated glass that has been shattered by a heavy
weight.
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Figure 5: This image sequence shows frames from an animation of a pair of objects colliding with each other. Each
object is a hybrid simulation that incorporates a rigid and a deformable (modal) component.

Figure 6: These images shows how constraints can be
used to deform objects. The object on the left of each im-
age shows the object prior to deformation, and the right
object shows the results after the red constraint points
have been moved.

Figure 7: These images are screen shots from an applica-
tion running natively on a Sony PlayStation2. The yellow
circle highlights the cursor that the user is using to poke
and pull an elastic figure.

around 10 points on the model can be constrained in real-

time on a moderate speed computer (300 MHz Pentium

II or Sony Playstation2). A limit is reached because the

solutions to equation (13) and equation (15) require a rel-

atively expensive computation of singular value decom-

positions, which cannot be calculated in real-time once

the matrices become too large.

We have created several animations (see supplemental

materials) demonstrating this system, each simulated in-

teractively for moderately complex objects. The results

appear plausible, and resemble animations that might be

simulated using more straightforward but more compu-

tationally expensive methods. The bottlenecks in hybrid

modal/rigid-body simulation are collision detection and

solving the linear program for the constraints. To reduce

the computation used in solving the linear program, the

extent of contact point clustering may be tweaked to sac-

rifice accuracy for speed. Figures 5 and 8 show objects

involved in collisions with a ground plane and each other.

Figure 8: A sequence of images showing the Stanford
Bunny model bouncing off a ground plane.

As with other methods based on tetrahedral finite el-

ements, we can embed high-resolution or non-manifold

surfaces inside a tetrahedral volume model. The bene-

fits of this technique are that the surface shading and tex-

turing can be specified independently from the dynam-

ics, and poorly constructed “polygon-soup” models may

be used. Both the brain model in figure 1, an extremely

complex object, and the “dodo” model in figure 5, a non-

manifold object, are modeled in this way. The “dodo”

model also demonstrates non-uniform material proper-

ties: the legs and beak are made of a stiffer material than

the rest of the body.

5 Conclusions

Modal analysis has been shown to be a useful tool for in-

teractively producing realistic simulations of elastic de-

formation. Both the analytic calculation of modal ampli-

tudes using complex oscillators and the removal of high-

frequency modes have a stabilizing effect on simulations,

allowing for large time steps to be taken.

Despite the approximation of linearity in modal anal-

ysis, the simulation results are quite plausible for most

objects. The exceptions are long, thin, or highly de-

formable objects, where nonlinear behavior dominates

the expected behavior. Despite these specific drawbacks,

many objects can be manipulated quite efficiently and re-

alistically using modal models.

The already small costs of modal analysis can be re-

duced further by leveraging graphics hardware, as shown

by James and Pai [10] or our own implementation on the

Sony PlayStation2. Using such hardware, CPU costs can

be reduced to modifying mode amplitudes during evolu-

tion of time steps, projection of forces, and application of

manipulation constraints.
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Synthesizing Sounds from Rigid-Body Simulations

James F. O’Brien Chen Shen Christine M. Gatchalian

EECS, Computer Science Division

University of California, Berkeley

Abstract

This paper describes a real-time technique for generating realistic
and compelling sounds that correspond to the motions of rigid ob-
jects. By numerically precomputing the shape and frequencies of an
object’s deformation modes, audio can be synthesized interactively
directly from the force data generated by a standard rigid-body sim-
ulation. Using sparse-matrix eigen-decomposition methods, the de-
formation modes can be computed efficiently even for large meshes.
This approach allows us to accurately model the sounds generated
by arbitrarily shaped objects based only on a geometric description
of the objects and a handful of material parameters. We validate our
method by comparing results from a simulated set of wind chimes
to audio measurements taken from a real set.

CR Categories: I.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—Physically based modeling;
I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Animation; I.6.8 [Simulation and Modeling]: Types of
Simulation—Animation; H.5.5 [Information Interfaces and Presen-
tation]: Sound and Music Computing—Signal analysis, synthesis,
and processing

Keywords: Sound modeling, physically based modeling, sim-
ulation, surface vibrations, dynamics, animation techniques, finite
element method, modal synthesis, modal analysis.

1 Introduction

One of the central goals for the field of computer graphics is the
compelling portrayal of realistic synthetic environments. However,
generating convincing animations of scenes such as that shown in
figure 1 requires depicting not only the visual aspects of the scene,
but its audio components as well. While constructing a soundtrack
by hand often provides a feasible option for animations that are gen-
erated off line, interactive applications increasingly rely on physi-
cally based simulation techniques to generate animated motions in
real-time and these applications require methods for generating the
corresponding audio in real-time as well.

One class of simulation method that has found widespread use
in real-time applications is rigid-body simulations. Because rigid
bodies are made up of incompliant materials, they experience only
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Figure 1: A synthetic environment containing a set of simulated
wind chimes. Both the motion of the chimes and the corresponding
audio can be computed at interactive speeds.

small-amplitude deformations during interactions with their envi-
ronment. Explicitly discarding these small deformations allows
rigid-body simulators to model a system’s remaining degrees of
freedom efficiently. However, although visually insignificant, it is
the vibration of these small-amplitude deformations that generates
the sounds heard from these objects.

This paper describes a real-time technique for generating real-
istic and compelling sounds that correspond to the motions gener-
ated by rigid-body simulation methods. Precomputing the shape
and frequencies of an object’s deformation modes allows that ob-
ject’s vibrational response to contact forces to be efficiently com-
puted at runtime. The vibrational response is then used directly
to compute the corresponding audio. Our technique computes an
object’s deformation modes numerically by performing an eigen-
decomposition of the system matrices from a finite element model
of the object. This approach allows us to accurately model the
sounds generated by arbitrarily shaped objects based on a geomet-
ric description of the object and a handful of material parameters.
The diagram in figure 2 provides an overview of this process.

2 Background

The technique presented in this paper is closely related to previous
methods developed by van den Doel, Kry, and Pai. The concept of
using the vibrational modes of an object for generating sound was
originally introduced to the graphics community in [van den Doel
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Figure 1: A synthetic environment containing a set of simulated
wind chimes. Both the motion of the chimes and the corresponding
audio can be computed at interactive speeds.

small-amplitude deformations during interactions with their envi-
ronment. Explicitly discarding these small deformations allows
rigid-body simulators to model a system’s remaining degrees of
freedom efficiently. However, although visually insignificant, it is
the vibration of these small-amplitude deformations that generates
the sounds heard from these objects.

This paper describes a real-time technique for generating real-
istic and compelling sounds that correspond to the motions gener-
ated by rigid-body simulation methods. Precomputing the shape
and frequencies of an object’s deformation modes allows that ob-
ject’s vibrational response to contact forces to be efficiently com-
puted at runtime. The vibrational response is then used directly
to compute the corresponding audio. Our technique computes an
object’s deformation modes numerically by performing an eigen-
decomposition of the system matrices from a finite element model
of the object. This approach allows us to accurately model the
sounds generated by arbitrarily shaped objects based on a geomet-
ric description of the object and a handful of material parameters.
The diagram in figure 2 provides an overview of this process.

2 Background

The technique presented in this paper is closely related to previous
methods developed by van den Doel, Kry, and Pai. The concept of
using the vibrational modes of an object for generating sound was
originally introduced to the graphics community in [van den Doel
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Objects that move in response to the
actions of a main character often make

an important contribution to the visual richness of an
animated scene. We use the term secondary motion to
refer to passive motions generated in response to the
movements of characters and other objects or environ-
mental forces. Secondary motion may be created by

background elements or by objects
interacting with an active character.
The flags shown in Figure 1 are
examples of secondary motion gen-
erated by environmental forces,
while the trampoline and skirt in
Figure 2 are objects that exhibit sec-
ondary motion in response to the
actions of active characters.

Secondary motions aren’t nor-
mally the main focus of an animat-
ed scene, yet their absence can
distract or disturb the viewer,
destroying the illusion of reality cre-

ated by the scene. For example, if the skirt in Figure 2
were rigid, the scene would be less believable; with
painted-on, skin-tight clothing, the scene would be less
interesting. While the viewer may not always be explic-
itly aware of secondary motions, they’re an important
part of many animated scenes.

Much of the research in computer animation has

focused on the difficult problem of animating the pri-
mary characters. Because objects that exhibit secondary
motions tend to be complex, deformable objects with
many degrees of freedom, the techniques that have been
developed for character animation are usually not
appropriate for animating secondary motion. In partic-
ular, methods based on motion capture or key-framing
are often impractical for secondary motion. As a result,
researchers have developed specialized procedural
methods for many of these objects.

While procedural models may be derived in a num-
ber of ways, physically based simulation has proven to
be both a highly effective and an elegant solution, par-
ticularly for passive systems with many degrees of free-
dom. One advantage of simulation is that the motion is
generated automatically from the initial specification of
the environment and the applicable physical laws. For
some applications, such as character animation, this
automation results in an undesirable loss of direct con-
trol over the details of the motion. However, for sec-
ondary motion this lack of control is usually not a
significant problem because these motions are passive,
dictated only by forces from the environment or the
actions of the primary characters. Even in situations
where aesthetic considerations call for an exaggerated
or otherwise unrealistic motion, often the movement of
the actor is exaggerated while the passive secondary
motions simply respond to the exaggerated motion.

Simulation has been successfully
used to model many isolated phe-
nomena, but secondary motion by
definition involves interactions
between objects. Specialized simu-
lations can be coupled together
using inter-system constraints and
forces to model the complex inter-
actions that occur in the real world.
The main contribution of this work
is an exploration of the issues
involved when passive secondary
systems are coupled to another, pri-
mary, system. Typically, but not nec-
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Figure 3: These images, along with the ones shown in Fig-
ure 1, show how splash behavior is a�ected by elasticity.
The upper-left image shows a fluid example. As expected,
the Worthington column moves in the direction of the im-
pact. In the viscoelastic examples, the column rises verti-
cally (upper-right) or actually rises back toward the impact
direction (lower-left). The lower-right image shows a fluid
with both elasticity and high viscosity.

strain deviation, �0, which is the elastic strain with any di-
lation removed1

�0 = �Elc �
Tr

�
�Elc

⇥

3
I . (7)

So long as the magnitude (Frobenius norm) of the strain
deviation remains below the yield point, ⇥, no plastic flow
occurs. When the limit is exceeded, flow occurs at a rate
proportional to the amount the limit has been exceeded by.
So the flow rate for plastic strain is

�̇Plc = �
�0

k�0k max
�
0, k�0k � ⇥

⇥
, (8)

where � is the material’s elastic decay rate, which determines
the rate of plastic flow.

Assuming that the initial total and plastic strains are both
zero, we can combine the above to compute the time deriva-
tive of the elastic strain which takes into account changes to
both total and plastic strains

�̇Elc =
⇤
r uT +

�
r uT

⇥T
⌅

/2� �
�0

k�0k max
�
0, k�0k � ⇥

⇥

(9)
The images shown in Figure 2 illustrate some e�ects gener-
ated by varying � and ⇥.

Note that Equation (9) does not take into account the
movement of the material through space. Like velocity or
any other fluid property, the elastic strain must be advected
with the fluid. We use the same semi-Lagrangian advection
scheme that we use for the fluid velocities, and we update
the elastic strain using Equation (9) after our advection step.

4.3 Grid Issues

The well known staggered grid method, originally described
by [Harlow and Welch, 1965], elegantly avoids problems that

1This distinction is a bit pedantic here, because the fluid is
incompressible and so the dilation should always be zero.

Figure 4: Examples of fluid being sprayed into a container.
The way di�erent fluids flow or pile in the container varies
significantly.

plague methods that store collocated pressure and velocity
values. However in addition to scalars (e.g. pressure) and
rank-one tensors (e.g. velocity), we also need to store the
elastic strain, a rank-two tensor, on the simulation grid.

Just as velocity components are stored separately on faces,
the di�erent components of the strain tensor are stored at
di�erent locations. The diagonal entries are stored at the
cell centers. The o�-diagonal entries are stored at the center
of edges perpendicular to the component directions. For
example, the xy components are stored on the edges parallel
to the z axis. This approach is a generalization of the 2D
method described in [Gerritsma, 1996], and they describe its
merits in detail.

We use a particle-level-set method for tracking the fluid’s
free surface as described in [Enright et al., 2002], but with
the substantially faster, though less accurate, method de-
tailed in [Enright et al., 2004]. The authors note that the
method is susceptible to volume loss, and we found this be-
havior to be problematic for some of our examples that in-
volve fixed, small amounts of fluid. We were able to ame-
liorate this problem somewhat by using a level-set grid with
twice the fluid grid’s resolution, and that is staggered with
respect to the fluid grid. This scheme places level-set grid
centers on the cell centers, face centers, edge centers, and
nodes of the fluid grid. In addition to helping to prevent vol-
ume loss by locating level-set values where velocity boundary
constraints are enforced, the higher resolution also benefits
the rendered surfaces.

5 Results and Discussion

We have implemented this method for modeling viscoelastic
behavior and used it to generate several example animations.
Most of these examples were selected to illustrate some in-
teresting aspect of viscoelastic fluid behavior. All of the
examples shown in this paper also appear on the accompa-
nying video, which also contains additional examples.

Figures 1 and 3 show several splashes that are generated
when a fluid sphere is hurled into a tank containing the same
material. The motion of the pure fluid example di�ers sub-
stantially from the viscoelastic examples. Additionally, the
surfaces of the viscoelastic examples retain evidence of the
impact even after motion has stopped. Figure 4 shows jets
of di�erent fluids sprayed into a closed container. Again, the
behavior of simple and viscoelastic fluids di�er substantially.
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Animating Gases with Hybrid Meshes

Abstract
This paper presents a method for animating gases on un-
structured tetrahedral meshes to e⌅ciently model the in-
teraction of the fluids with irregularly shaped obstacles. Be-
cause our discretization scheme parallels that of the standard
staggered grid mesh we are able to combine tetrahedral cells
with regular hexahedral cells in a single mesh. This hybrid
mesh o�ers both accuracy near obstacles and e⌅ciency in
open regions.

Keywords: Natural phenomena, physically based anima-
tion, computational fluid dynamics.

CR Categories: I.3.5 [Computer Graphics]: Computa-
tional Geometry and Object Modeling—Physically based
modeling; I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Animation; I.6.8 [Simulation and
Modeling]: Types of Simulation—Animation.

1 Introduction
Over the last few years, simulation-based methods for an-
imating fluids have developed to a mature state where
production-quality results can be reliably obtained using
both commercial and proprietary systems. The majority
of these systems perform computations on regular hexa-
hedral meshes using a standard staggered-grid discretiza-
tion scheme that allows high-quality results to be produced
using reasonable amounts of computation. Unfortunately,
with grid-based methods boundaries typically must be rep-
resented in a voxelized fashion, and as a result animating
fluids in irregularly shaped domains can be awkward.

In this paper we describe a fluid simulation method for use
on unstructured tetrahedral meshes that can be made to con-
form to arbitrary polygonal boundaries so that fluids may
easily be modeled over irregularly shaped domains. The dis-
cretization scheme we employ for tetrahedra is a variation of
the staggered scheme commonly used for regular hexahedral
grids, and it allows natural enforcement of essential bound-
ary conditions. Furthermore, because our tetrahedral dis-
cretization is compatible with the standard staggered-grid
scheme, we can combine unstructured tetrahedral regions
and regular hexahedral grids to e⌅ciently cover a single sim-
ulation domain. This hybrid approach allows easy confor-
mance to polygonal boundaries while still retaining a regular
grid’s e⌅ciency over large open regions.

We have implemented this method and tested its perfor-
mance on a variety scenarios, such as the one shown in
Figure 1, that involve fluids completely filling an irregu-
larly shaped simulation domain. The results generated using
our hybrid method are comparable, both in visual quality
and computational e⌅ciency, to results obtained from grid-
based methods, but our method can also conform to complex
boundaries and in many contexts this facility can be quite
useful.

This work has been submitted for publication. Copyright may be

transferred without further notice and the accepted version may

then be posted by the publisher. Unauthorized viewing, duplication,

and/or distribution are prohibited.

Figure 1: A smoke simulation on a tetrahedral mesh inside
the Stanford Dragon model. A small region in the dragon’s
mouth is open so that smoke can flow out around its jaw
into the surrounding volume.

2 Related Work
A substantial amount of work in the field of computer graph-
ics has addressed the problem of realistically animating the
behavior of fluids. Many of the resulting methods make use
of a spatial discretization on regular hexahedral grids, and
some recent examples include [Foster and Metaxas, 1996],
[Foster and Metaxas, 1997], [Stam, 1999], [Yngve et al.,
2000], [Fedkiw et al., 2001], [Foster and Fedkiw, 2001], [En-
right et al., 2002], [Carlson et al., 2002], [Feldman et al.,
2003], [Goktekin et al., 2004], and [Carlson et al., 2004]. In
general, these techniques have progressed to the point where
some fluid phenomena can be modeled well enough that a
näıve viewer may have di⌅culty distinguishing between real
and simulated footage.

The most commonly used discretization scheme for regu-
lar hexahedral grids is the well known staggered grid method
that was originally developed by [Harlow and Welch, 1965].
By storing velocity components and pressure on mutually
staggered grids, it elegantly avoids problems that plague
methods which store collocated pressure and velocity val-
ues. The method also provides an easy and natural method
for imposing both open and closed boundary conditions over
surfaces that align with the grid-cell faces.

Recently, [Losasso et al., 2004] described an octree-based
method that retains many of the advantages of regular stag-
gered grids while also providing the additional advantage
that simulation detail may be focused only in desired re-
gions. A powerful application of this method is for tracking
moving boundaries (free surfaces) at high resolution. To
some extent, octrees also provide a method for dealing with
the fixed boundaries of an irregular domain. However, forced
octree refinement near fixed boundaries may not aways be
desirable.

While the above fluid methods make use of Eulerian grids
on regular domains, other, meshless methods use Lagrangian

1
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Figure 7: The left figure shows the ground area that has been created in the hash table. The currently active area
is highlighted in red. The right figure shows the same scene rendered over the initial ground surface. There are
approximately 37,000 columns in the active area and 90,000 stored in the hash table; the number of columns in
the entire virtual grid is greater than 2 million.

The initial position, p0, for a particle is randomly
distributed over the surface of the triangle according
to:

p0 = baxa + bbxb + bcxc (4)

where xa, xb, and xc are the coordinates of the vertices
of the triangle and ba, bb, and bc are the barycentric
coordinates of p0 given by

ba = 1.0 −√
ρa (5)

bb = ρb(1.0 − ba) (6)

bc = 1.0 − (ba + bb) (7)

where ρa and ρb are independent random variables
evenly distributed between [0..1]. This computation
results in a uniform distribution over the triangle28 .

The initial velocity of a particle is computed from
the velocity of the rigid object:

ṗ0 = + × p0 (8)

where and are the linear and angular velocity
of the object. To give a more realistic and appealing
look to the particle motion, the initial velocities are
randomly perturbed.

The final component of the particle creation algo-
rithm accounts for the greater probability that mate-
rial will fall off rapidly accelerating objects. A particle
is only created if (|p̈0|/s)γ > ρ, where s is the min-
imal acceleration at which all potential particles will
be dropped, γ controls the variation of the probabil-
ity of particle creation with speed, and ρ is a random
variable evenly distributed in the range [0..1].

If particles are only generated at the beginning of
a time step then the resulting particle distribution

will have a discrete, sheetlike appearance. We avoid
this undesirable effect by randomly distributing each
particle’s creation time within the time step interval.
The information used to calculate the initial position
and velocity is interpolated within the interval to ob-
tain information appropriate for the particle’s creation
time.

Once generated, the particles fall under the influ-
ence of gravity. When a particle hits the surface of a
column, its volume is added to the column.

3.3. Implementation and Optimization

Simulations of terrain generally span a large area. For
example, we would like to be able to simulate a run-
ner jogging on a beach, a skier gliding down a snow-
covered slope, and a stampede of animals crossing a
sandy valley. A naive implementation of the entire ter-
rain would be intractable because of the memory and
computation requirements. The next two sections de-
scribe optimizations that allow us to achieve reason-
able performance by storing and simulating only the
active portions of the surface and by parallelizing the
computation.

Algorithm Complexity. Because the ground model
is a two-dimensional rectilinear grid, the most
straightforward implementation is a two-dimensional
array of nodes containing the height and other infor-
mation about the column. If an animation required
a grid of i rows and j columns, i × j nodes would
be needed, and computation time and memory would
grow linearly with the number of grid points. Thus,
a patch of ground 10 m × 10 m with a grid resolu-
tion of 1 cm yields a 1000×1000 grid with one million

c© The Eurographics Association 1999
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Particle Systems
• Single particles are very simple
• Large groups can produce interesting effects
• Supplement basic ballistic rules

• Collisions
• Interactions
• Force fields
• Springs
• Others...

Karl Sims, SIGGRAPH 1990

6
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• Single particles are very simple
• Large groups can produce interesting effects
• Supplement basic ballistic rules

• Collisions
• Interactions
• Force fields
• Springs
• Others...

Particle Systems

Feldman, Klingner, O’Brien, SIGGRAPH 2005

8

Basic Particles
• Basic governing equation

•    is a sum of a number of things
• Gravity: constant downward force proportional to mass
• Simple drag: force proportional to negative velocity
• Particle interactions: particles mutually attract and/or repell

• Beware                complexity!
• Force fields
• Wind forces
• User interaction

ẍ =
1

m
ff

O(n2)

7
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Basic Particles

• Properties other than position
• Color
• Temp
• Age

• Differential equations also needed to govern these 
properties

• Collisions and other constrains directly modify position 
and/or velocity

Particle Rules

10

Bryan E. Feldman, James F. O'Brien, and Okan Arikan. "Animating 
Suspended Particle Explosions". In Proceedings of ACM SIGGRAPH 
2003, pages 708–715, August 2003.
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Integration
• Euler’s Method

• Simple
• Commonly used
• Very inaccurate
• Most often goes unstable

x

t+�t = x

t +�t ẋt

ẋ

t+�t = ẋ

t +�t ẍt

12

Integration
• For now let’s pretend 

• Velocity (rather than acceleration) is a function of force 

f = mv

ẋ = f(x, t)

Witkin and Baraff
Vector Field

forms a vector

field.

x = f (x,t)

The derivative

function

Initial Value Problem

Start Here

Follow the vectors…

Figure 1: The derivative function f (x, t). defines a vector field.

Figure 2: An initial value problem. Starting from a point x0, move with the velocity specified by

the vector field.

SIGGRAPH ’97 COURSE NOTES B2 PHYSICALLY BASEDMODELING

Note: Second order ODEs can be turned into first order ODEs using 
extra variables.

11
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Vector Field

forms a vector

field.

x = f (x,t)

The derivative

function

Initial Value Problem

Start Here

Follow the vectors…

Figure 1: The derivative function f (x, t). defines a vector field.

Figure 2: An initial value problem. Starting from a point x0, move with the velocity specified by

the vector field.
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Integration
• For now let’s pretend 

• Velocity (rather than acceleration) is a function of force 

f = mv

ẋ = f(x, t)

Witkin and Baraff

Start

14

Integration
• With numerical integration, errors accumulate
• Euler integration is particularly bad

Euler's Method

x(t + Δt) = x(t) + Δt f(x,t)

• Simplest numerical 
solution method

• Discrete time steps

• Bigger steps, bigger 
errors.

Figure 3: Euler’s method: instead of the true integral curve, the approximate solution follows a

polygonal path, obtained by evaluating the derivative at the beginning of each leg. Here we show

how the accuracy of the solution degrades as the size of the time step increases.

In contrast, we will be concerned exclusively with numerical solutions, in which we take dis-

crete time steps starting with the initial value x(t0). To take a step, we use the derivative function

f to calculate an approximate change in x, !x, over a time interval !t , then increment x by !x to

obtain the new value. In calculating a numerical solution, the derivative function f is regarded as

a black box: we provide numerical values for x and t , receiving in return a numerical value for ẋ.

Numerical methods operate by performing one or more of these derivative evaluations at each time

step.

2.1 Euler’s Method

The simplest numerical method is called Euler’s method. Let our initial value for x be denoted by

x0 = x(t0) and our estimate of x at a later time t0 + h by x(t0 + h), where h is a stepsize parameter.

Euler’s method simply computes x(t0 + h) by taking a step in the derivative direction,

x(t0 + h) = x0 + hẋ(t0).

You can use the mental picture of a 2D vector field to visualize Euler’s method. Instead of the

real integral curve, p follows a polygonal path, each leg of which is determined by evaluating the

vector f at the beginning, and scaling by h. See figure 3.

Though simple, Euler’s method is not accurate. Consider the case of a 2D function f whose

integral curves are concentric circles. A point p governed by f is supposed to orbit forever on

whichever circle it started on. Instead, with each Euler step, p will move on a straight line to a circle

of larger radius, so that its path will follow an outward spiral. Shrinking the stepsize will slow the

rate of this outward drift, but never eliminate it.

SIGGRAPH ’97 COURSE NOTES B3 PHYSICALLY BASEDMODELING

x := x + �t f(x, t)

Witkin and Baraff
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Integration
• Stability issues can also arise

• Occurs when errors lead to larger errors
• Often more serious than error issues

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference
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first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference
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˙

x = [� sin(!t) , � cos(!t) ]

Witkin and Baraff
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• Modified Euler  

Integration

ẋ

t+�t = ẋ

t + �t ẍ

t

x

t+�t = x

t +
�t

2
(ẋt + ẋ

t+�t)

x

t+�t = x

t + �t ẋ

t +
(�t)2

2
ẍ

t
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Integration
• Midpoint method

a. Compute half Euler step
b. Eval. derivative at halfway
c. Retake step

• Other methods
• Verlet
• Runge-Kutta
• And many others...

The Midpoint Method

a

b

c

a. Compute an Euler step

b.Evaluate f at the midpoint

c. Take a step using the 
midpoint value

Δx = Δt f(x,t)

fmid = ( )f x + Δx
2

, t + Δt
2

 

x(t + Δt) = x(t) + Δt fmid 

Figure 5: The midpoint method is a 2nd-order solution method. a) an euler step is computed, b) the

derivative is evaluated again at the step’s midpoint, and the second evaluation is used to calculate

the step. The integral curve—the actual solution—is shown as c.

midpoint method is correct to within O(h3), but requires two evaluations of f . See figure 5 for a

pictorial view of the method.

We don’t have to stop with an error of O(h3). By evaluating f a few more times, we can

eliminate higher and higher orders of derivatives. The most popular procedure for doing this is a

method called Runge-Kutta of order 4 and has an error per step of O(h5). (The Midpoint method

could be called Runge-Kutta of order 2.) We won’t derive the fourth order Runge-Kutta method,

but the formula for computing x(t0 + h) is listed below:

k1 = h f (x0, t0)

k2 = h f (x0 + k1

2
, t0 + h

2
)

k3 = h f (x0 + k2

2
, t0 + h

2
)

k4 = h f (x0 + k3, t0 + h)

x(t0 + h) = x0 + 1

6
k1 + 1

3
k2 + 1

3
k3 + 1

6
k4.

3 Adaptive Stepsizes

Whatever the underlying method, a major problem lies in determing a good stepsize. Ideally, we

want to choose h as large as possible—but not so large as to give us an unreasonable amount of

error, or worse still, to induce instability. If we choose a fixed stepsize, we can only proceed as

fast as the “worst” sections of x(t) will allow. What we would like to do is to vary h as we march

SIGGRAPH ’97 COURSE NOTES B6 PHYSICALLY BASEDMODELING

Witkin and Baraff
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Integration
• Implicit methods

• Informally (incorrectly) called backward methods
• Use derivatives in the future for the current step

x

t+�t = x

t + �t ẋ

t+�t

ẋ

t+�t = ẋ

t + �t ẍ

t+�t

ẍ

t+�t = A(xt+�t, ẋt+�t, t + �t)

ẋ

t+�t = V(xt+�t, ẋt+�t, t + �t)
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Integration
• Implicit methods

• Informally (incorrectly) called backward methods
• Use derivatives in the future for the current step

• Solve nonlinear problem for           and
• This is fully implicit backward Euler
• Many other implicit methods exist...
• Modified Euler is partially implicit as is Verlet

ẋ

t+�t = ẋ

t + �t A(xt+�t, ẋt+�t, t + �t)

x

t+�t
ẋ

t+�t

ẋ

t+�t = ẋ

t + �t V(xt+�t, ẋt+�t, t + �t)

20

Temp Slide

Two Problems

Inaccuracy:
Error turns x(t) from a
circle into the spiral of
your choice.

Instability: off to
Neptune!

Figure 4: Above: the real integral curves form concentric circles, but Euler’s method always spirals

outward, because each step on the current circle’s tangent leads to a circle of larger radius. Shrinking

the stepsize doesn’t cure the problem, but only reduces the rate at which the error accumulates.

Below: too large a stepsize can make Euler’s method diverge.

Moreover, Euler’s method can be unstable. Consider a 1D function f = −kx , which should
make the point p decay exponentially to zero. For sufficiently small step sizes we get reasonable

behavior, but when h > 1/k, we have |!x | > |x |, so the solution oscillates about zero. Beyond
h = 2/k, the oscillation diverges, and the system blows up. See figure 4.

Finally, Euler’s method isn’t even efficient. Most numerical solution methods spend nearly all

their time performing derivative evaluations, so the computational cost per step is determined by

the number of evaluations per step. Though Euler’s method only requires one evaluation per step,

the real efficiency of a method depends on the size of the steps it lets you take—while preserving

accuracy and stability—as well as on the cost per step. More sophisticated methods, even some re-

quiring as many as four or five evaluations per step, can greatly outperform Euler’s method because

their higher cost per step is more than offset by the larger stepsizes they allow.

To understand how we go about improving on Euler’s method, we need to look more closely at

the error that the method produces. The key to understanding what’s going on is the Taylor series:

Assuming x(t) is smooth, we can express its value at the end of the step as an infinite sum involving

the the value and derivatives at the beginning:

x(t0 + h) = x(t0) + hẋ(t0) + h2

2!
ẍ(t0) + h3

3!
x˙̇ ˙(t0) + . . . + hn

n!

∂nx

∂tn
+ . . .

As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference
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As you can see, we get the Euler update formula by truncating the series, discarding all but the

first two terms on the right hand side. This means that Euler’s method would be correct only if

all derivatives beyond the first were zero, i.e. if x(t) were linear. The error term, the difference
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Integration

A(xt+�t, ẋt+�t) ⇡ A(xt, ẋt) + C · (�x) + D · (�ẋ)

V(xt+�t, ẋt+�t) ⇡ V(xt, ẋt) + A · (�x) + B · (�ẋ)
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• Semi-Implicit
• Approximate with linearized equations

22

Integration

• Explicit methods can be conditionally stable
• Depends on time-step and stiffness of system

• Fully implicit can be unconditionally stable
• May still have large errors

• Semi-implicit can be conditionally stable
• Nonlinearities can cause instability
• Generally more stable than explicit
• Comparable errors as explicit

• Often show up as excessive damping
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Integration
• Integrators can be analyzed in modal domain 
• System have different component behaviors
• Integrators impact components differently

Figure 3: The top shows a multi-exposure image from an anima-
tion of a bowl falling onto a hard surface with the path of the bowl’s
center traced by a yellow curve. Only the bowl is sounding. The
two bottom rows show a side and top view of the bowl along with
three of the bowl’s first vibrational modes. (The modes selected for
the illustration are the first three non-rigid ones with distinct eigen-
values that are excited by a transverse impulse to the bowl’s rim.)

from a rigid-body simulation is both straightforward to implement
and computationally efficient:

1. A rigid-body simulation is set up for the desired scenario.

2. For each object in the simulation, the system matrices are as-
sembled and decomposed into their vibrational modes (i.e. the

columns of −T ).

3. For each object in the simulation, only the columns of −T

corresponding to |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s
(20...20,000 Hz) are retained, the rest are discarded (or if the
sparse method is used, never computed).

4. As the rigid body simulation runs, collision forces are pro-
jected onto the retained modes. The response of each mode is
modeled using equation (8).

5. Each mode response is scaled according to how it moves the
objects surface and the scaled responses are then summed to-
gether.

6. Finally, the result is output to the computer’s audio device.

In practice, not all of the modes in the audible range need to
be retained. As discussed in [van den Doel et al., 2001], high-
quality results can easily be obtained using only the first 800 or
fewer modes.
A mode’s response to a projected impulse is given by equa-

tion (8) with

c1 =
2∆tgi

ω+
i − ω−

i

(16)

c2 =
2∆tgi

ω−
i − ω+

i

(17)

where ∆t is the interval over which the projected force is applied,
and t is time relative to when the impulse was applied. Substitut-
ing these values of c1 and c2 into equation (8), recalling that only

modes with |Im(ωi)| in the range 3.18 . . . 3,180 Rad/s are used,
and then simplifying yields

zi =
2∆tgi

|Im(ωi)|
etRe(ωi) sin(t|Im(ωi)|) . (18)

Evaluating equation (18) for every audio sample is inefficient.

By noting that eω(t+s) = eωteωs, the value of the oscillator at one
audio sample can be computed from the previous value using only a
single complex multiply. Additionally, as a mode is excited at sub-
sequent times by different contact forces, the additional excitations
can be modeled by simply adding the new value to the oscillator’s
current value. Because the cost of modeling additional impulses is
essentially zero, the forces from the rigid-body simulation may be
convolved with a Gaussian kernel to model the effect of soft colli-
sions, or with a noise function to model small-scale roughness that
is below the resolution of the rigid-body simulator [van den Doel
et al., 2001]. Our results were generated using the former.

A method for modeling the coupling between vibrations in an
object and vibrations in the surrounding air is described in [O’Brien
et al., 2001]. Unfortunately, their method is too slow for real-time
use. We compute an approximate coupling coefficient for each
mode by summing the amount of normal displacement generated by
that mode over the surface of the object multiplied by the mode’s
frequency. The coupling coefficient for each mode multiplies the
result computed by that mode’s oscillator and the sum of the scaled
oscillators is the final sound generated by the system. A result
of this simplification is all objects are treated as omni-directional
sources.

4 Results and Discussion

We have built a system that implements the methods described
above and used it to generate a number of demonstrative examples.
Table 1 lists the parameters that were used in each of the examples,
and the video tape accompanying this paper contains animations
that exhibit the sounds and motions produced.

To test how well the computed results match real objects, we
generated the wind chimes shown in figure 1. These chimes were
modeled based on measurements from a real set of chimes. Each
tube is a hollow cylinder 1.25 cm in radius with a nominal wall
thickness of 1mm. The measured lengths of the chimes are listed
in table 2. We computed the modal decomposition for each chime
using reference parameters for aluminum. The resulting base fre-
quencies matched measured ones to within 2% error. However, the
real chimes were slightly out of tune, so we tuned the simulated set
by adjusting the tube lengths so that they were within ±1Hz of the
correct (D scale) tuning.

Figure 3 shows a bowl model that was used for two of the ex-
amples. The modal decomposition of the bowl was computed once
with material parameters for aluminum and again with material pa-
rameters for wood (oak). Two animations were created, both with
the same rigid-body motion but with the two sound tracks gener-
ated from the two different modal decompositions. The resulting
audio (refer to video tape) captures the general characteristics of
both materials as well as details such as the sound produced as the
bowl rolls on its edge. Figure 3 also illustrates the mode-shapes
for three of the bowl’s vibrational modes by showing the results of
applying the mode as a displacement over the bowl’s original shape.

An example generated using a more complex model consists of
bunny figurines falling through a chute. (See figure 4.) Both the
bunny and the shelves in the chute generate sounds when struck.
The shelves are made of plastic, metal, and wood. The bunny is
ceramic. The tetrahedral bunny model was generated by meshing
the region between the surface of the Stanford Bunny model and an
interior offset surface to create a hollow figure with finite thickness
walls, as shown on the right side of figure 4. The right side of

5

24

Suggested Reading

• Physically Based Modeling: Principles and Practice  
• Andy Witkin and David Baraff
• http://www-2.cs.cmu.edu/~baraff/sigcourse/index.html

• Numerical Recipes in C++
• Chapter 16

• Any good text on integrating ODE’s
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