CS-I 84: Computer Graphics

Lecture \#I7: Motion Capture

Prof. James O'Brien
University of Califomia, Berkeley
vesurnio

Sunday, November 3, 13

What types of objects?

- Human, whole body
- Portions of body
- Facial animation
- Animals
- Puppets
- Other objects

[^0]
Capture Equipment

- Passive Optical Advantages
- Accurate
- May use many markers
- No cables
- High frequency

Disadvantages

- Requires lots of processing
- Expensive systems
- Occlusions

- Marker swap
- Lighting / camera limitations

Capture Equipment

- Magnetic Trackers

- Transmitter emits field
- Trackers sense field
- Trackers report position and orientation

Capture Equipment

- Electromagnetic Advantages

6 DOF data

- No occlusions

Less post processing

- Cheaper than optica

Disadvantages
Cables

- Problems with metal objects
- Low(er) frequency
- Limited range
- Limited number of trackers

Performance Capture

- Many studios regard Motion Capture as evil
- Synonymous with low quality motion
- No directive / creative control
- Cheap

Performance Capture is different

- Use mocap device as an expressive input device
- Similar to digital music and MIDI keyboards

| Manipulating Motion Data |
| :--- | :--- |
| - Basic tasks |
| - Adjusting |
| - Blending |
| - Transitioning |
| - Retargeting |
| - Building graphs |

Nature of Motion Data

Gleicher, SIGGRAPH 98

[^1]
Adjusting

- Define desired motion function in parts

$$
\boldsymbol{m}(t)=\boldsymbol{m}_{0}(t)+\boldsymbol{d}(t)
$$

Adjusting

Select adjustment function from "some nice space"

- Example C2 B-splines
- Spread modification over reasonable period of time
- User selects support radius

Adjusting

Blending

- Given two motions make a motion that combines qualities of both

$$
\boldsymbol{m}_{\alpha}(t)=\alpha \boldsymbol{m}_{a}(t)+(1-\alpha) \boldsymbol{m}_{b}(t)
$$

- Assume same DOFs
- Assume same parameter mappings

Blending

- Consider blending slow-walk and fast-walk

Bruderlin and Williams SIGGRAPH 95

Blending

- Define timewarp functions to align features in motion

Normalized time is w

Blending

- Blend in normalized time

$$
\boldsymbol{m}_{\alpha}(w)=\alpha \boldsymbol{m}_{a}\left(w_{a}\right)+(1-\alpha) \boldsymbol{m}_{b}\left(w_{b}\right)
$$

- Blend playback rate

$$
\frac{\mathrm{d} t}{\mathrm{~d} w}=\alpha \frac{\mathrm{d} t}{\mathrm{~d} w_{a}}+(1-\alpha) \alpha \frac{\mathrm{d} t}{\mathrm{~d} w_{b}}
$$

Blending

- Add explicit constrains to key points
- Enforce with IK over time

Blending / Adjustment

- Short edits will tend to look acceptable
- Longer ones will often exhibit problems
- Optimize to improve blends / adjustments
- Add quality metric on adjustment
- Minimize accelerations / torques
- Explicit smoothness constraints
- Other criteria...

Multivariate Blending

- Extend blending to multivariate interpolation

Use standard scattered-data interpolation methods

Sunday, November 3, 13

Motion Graphs

- Hand build motion graphs often used in games
- Significant amount of work required
- Limited transitions by design
- Motion graphs can also be built automatically

	Motion Graphs
- Similarity metric	
- Measurement of how similar two frames of motion are	
- Based on joint angles or point positions • Must include some measure of velocity independent of capture setup and skeleton	
- Capture a "large" database of motions	

Motion Graphs

- Random walks
- Start in some part of the graph and randomly make transitions
- Avoid dead ends
- Useful for "idling" behaviors
- Transitions
- Use blending algorithm

	Motion oraphs
	- Match imposed requirements - Start at a particular location a particular location - Pass through particular pose - Can be solved using dynamic programing - Efficiency issues may require approximate solution - Notion of "goodness" of a solution

Graph Unrolling

Sunday, November 3, 13

Precomputed Simulation

- No significant CPU load at runtime
- Decouples quality from runtime cost
- No new data at runtime
- Simulation can't crash application
- All motion can be inspected/edited
- Allows QA and art direction of simulations
- Extend to other types of simulation?
- Dynamic variations?

Suggested Reading

Fourier principles for emotion-based human figure animation, Unuma, Anjyo, and Takeuchi, SIGGRAPH 95

Motion signal processing, Bruderlin and Williams, SIGGRAPH 95
Motion warping, Witkin and Popovic, SIGGRAPH 95
Efficient generation of motion transitions using spacetime constrains, Rose et al, SIGGRAPH 96

Retargeting motion to new characters, Gleicher, SIGGRAPH 98

- Verbs and adverbs: Multidimensional motion interpolation, Rose, Cohen, and Bodenheimer, IEEE: Computer Graphics and Applications, v. I8, no. 5, 1998

Doyub Kim, Woojong Koh, Rahul Narain, Kayvon Fatahalian, Adrien Treuille, and James F. O'Brien. "Near-exhaustive Precomputation of Secondary Cloth Effects", SIGGRAPH 2013

Suggested Reading

- Retargeting motion to new characters, Gleicher, SIGGRAPH 98
- Footskate Cleanup for Motion Capture Editing, Kovar, Schreiner, and Gleicher, SCA 2002. Interactive Motion Generation from Examples, Arikan and Forsyth, SIGGRAPH 2002. - Motion Synthesis from Annotations, Arikan, Forsyth, and O'Brien, SIGGRAPH 2003.

Okan Arikan, David A. Forsyth, and James F. O'Brien. "Pushing People Around". Symposium on Computer Animation 2005, pages 56-66, July 2005.

Automatic Joint Parameter Estimation from Magnetic Motion Capture Data, O'Brien, Bodenheimer, Brostow, and Hodgins, Gl 2000.

Skeletal Parameter Estimation from Optical Motion Capture Data, Kirk, O'Brien, and Forsyth, CVPR 2005.

Perception of Human Motion with Different Geometric Models, Hodgins, O'Brien, and Tumblin, IEEE:TVCG 1998.

[^0]: Sunday, November 3, 13

[^1]: Sunday, November 3, 13

