CS-184: Computer Graphics

Lecture #14: Subdivision

Prof. James O'Brien University of California, Berkeley

V2013-F-14-1.0

-

Subdivision

- Start with:
- Given control points for a curve or surface, find new control points for a sub-section of curve/surface
- Key extension to basic idea:
- Generalize to non-regular surfaces

·	

Consider NURBS Surface Coarse mesh Large bump Control mesh dictates feature size.

3

Tensor Product Surface Refinement

5

Bézier Subdivision

$$\mathbf{x}(u) = \sum_{i} b_i(u) \, \mathbf{p}_i$$

$$\mathbf{x}(u) = [1, u, u^2, u^3] \, \beta_{\mathbf{Z}} \mathbf{P}_{\mathbf{V}}$$

Vector of control points

$$\beta_{\mathbf{Z}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ 1 & 3 & 2 & 1 \end{bmatrix}$$

Bézier Subdivision

$$\mathbf{x}(u) = [1, u, u^2, u^3] \, \mathbf{\beta_Z P}$$

$$u \in [0..1/2] / u \in [1/2..1]$$

$$\beta_{\mathbf{Z}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

Bézier Subdivision

$$\mathbf{x}(u) = [1, u, u^2, u^3] \, \mathbf{\beta_Z P}$$

Can't change these.

$$\beta_{\mathbf{Z}} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ -3 & 3 & 0 & 0 \\ 3 & -6 & 3 & 0 \\ -1 & 3 & -3 & 1 \end{bmatrix}$$

8

Bézier Subdivision

$$\mathbf{x}(u) = [1, u, u^2, u^3] \beta_{\mathbf{Z}} \mathbf{P}$$
 $u \in [0..\frac{1}{2}]$

$$\mathbf{x}(u) = [1, \frac{u}{2}, \frac{u^2}{4}, \frac{u^3}{8}] \beta_{\mathbf{Z}} \mathbf{P}$$
 $u \in [0..1]$

$$\mathbf{x}(u) = [1, u, u^2, u^3] \mathbf{S}_1 \mathbf{\beta}_{\mathbf{Z}} \mathbf{P}$$

$$\mathbf{s}_{1} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1/2 & 0 & 0 \\ 0 & 0 & 1/4 & 0 \\ 0 & 0 & 0 & 1/8 \end{bmatrix} \quad \mathbf{x}(u) = [1, u, u^{2}, u^{3}] \beta_{\mathbf{Z}} \beta_{\mathbf{Z}}^{-1} \mathbf{S}_{1} \beta_{\mathbf{Z}} \mathbf{P} \\ \mathbf{x}(u) = [1, u, u^{2}, u^{3}] \beta_{\mathbf{Z}} \mathbf{H}_{\mathbf{Z}1} \mathbf{P}$$

$$\mathbf{x}(u) = [1, u, u^2, u^3] \beta_{\mathbf{Z}} \beta_{\mathbf{Z}}^{-1} \mathbf{S}_1 \beta_{\mathbf{Z}} \mathbf{F}_1$$

9

$$\mathbf{x}(u) = [1, u, u^2, u^3] \mathbf{\beta_Z H_{Z1} P}$$

Bézier Subdivision

Bézier Subdivision

$$\mathbf{H}_{Z2} = \begin{bmatrix} \frac{1}{8} & \frac{3}{8} & \frac{3}{8} & \frac{1}{8} \\ 0 & \frac{1}{4} & \frac{1}{2} & \frac{1}{4} \\ 0 & 0 & \frac{1}{2} & \frac{1}{2} \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{S}_{2} = \begin{bmatrix} 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & \frac{1}{4} & \frac{3}{8} \\ 0 & 0 & 0 & \frac{1}{8} \end{bmatrix}$$

$$\mathbf{S}_2 = \left[\begin{array}{ccccc} 1 & \frac{1}{2} & \frac{1}{4} & \frac{1}{8} \\ 0 & \frac{1}{2} & \frac{1}{2} & \frac{3}{8} \\ 0 & 0 & \frac{1}{4} & \frac{3}{8} \\ 0 & 0 & 0 & \frac{1}{8} \end{array} \right]$$

11

Bézier Subdivision

 $\mathbf{x}(u,v) = [1, u, u^2, u^3] \beta_{\mathbf{Z}} \mathbf{P} \beta_{\mathbf{Z}}^{\mathsf{T}} [1, v, v^2, v^3]^{\mathsf{T}}$ 4 x 4 matrix of control

15

Regular B-Spline Subdivision

$$\mathbf{x}(u,v) = [1, u, u^2, u^3] \beta_{\mathrm{B}} \mathbf{P} \beta_{\mathrm{B}}^{\mathsf{T}} [1, v, v^2, v^3]^{\mathsf{T}}$$
$$\mathbf{P}_{11} = \mathbf{H}_{\mathrm{B}1} \mathbf{P} \mathbf{H}_{\mathrm{B}1}^{\mathsf{T}}$$

\mathbf{x}(u,v)= [1,u,u^2,u^3] \beta_{\mbox{\Huge B}} \; \mathbf{P}\; \beta_{\mbox{\Huge B}}^{\mathsf{T}} [1,v,v^2,v^3]^{\mathsf{T}}

$$\mathbf{P}_{11} = \mathbf{H}_{B1} \mathbf{P} \, \mathbf{H}_{B1}^\mathsf{T}$$

In this parametric view these knot points are collocated.

The 3D control points are not.

17

Regular B-Spline Subdivision

$$\mathbf{P}_{11} = \mathbf{H}_{B1} \mathbf{P} \, \mathbf{H}_{B1}^{\mathsf{T}} \\ \mathbf{P}_{12} = \mathbf{H}_{B1} \mathbf{P} \, \mathbf{H}_{B2}^{\mathsf{T}}$$

$$\begin{aligned} \mathbf{P}_{11} &= \mathbf{H}_{B1} \mathbf{P} \, \mathbf{H}_{B1}^\mathsf{T} \\ \mathbf{P}_{12} &= \mathbf{H}_{B1} \mathbf{P} \, \mathbf{H}_{B2}^\mathsf{T} \\ \mathbf{P}_{22} &= \mathbf{H}_{B2} \mathbf{P} \, \mathbf{H}_{B2}^\mathsf{T} \end{aligned}$$

19

Regular B-Spline Subdivision

	0	1 2
	1/8	$\frac{2}{3}$
	1	4 1 2
20	$\frac{1}{2}$	2

21

Regular B-Spline Subdivision

Face point
$$f = \frac{v_1 + v_2 + v_3 + v_4}{4}$$
 Edge point $v_1 - v_2 - v_3 - v_4$ $v_2 - v_3 - v_4$ Edge point $v_1 - v_2 - v_3 - v_4$ $v_2 - v_3 - v_4$ $v_3 - v_4 - v_2 - v_3 - v_4$ $v_4 - v_2 - v_3 - v_4$ $v_2 - v_4 - v_4$

$$\begin{vmatrix} f_1 & | \overline{m_1} & f_2 \\ | \overline{m_4} & \underline{p} | v & \overline{m_2} \\ | f_3 & | \underline{m_3} & f_4 \end{vmatrix} v = \frac{ Vertex \ point}{16}$$

$$v = \frac{f_1 + f_2 + f_3 + f_4 + 2(m_1 + m_2 + m_3 + m_4) + 4p}{16}$$

$$m \ midpoint \ of \ edge, \ not \ "edge \ point"}{p \ old \ "vertex \ point"}$$

23

Regular B-Spline Subdivision

• Recall that control mesh approaches surface

• Limit of subdivision <u>is</u> the surface

25

Irregular B-Spline Subdivision

• Catmull-Clark Subdivision

• Generalizes regular B-Spine subdivision

- Catmull-Clark Subdivision
- Generalizes regular B-Spine subdivision
- Rules reduce to regular for ordinary vertices/faces

f = average of surrounding vertices $e = \frac{f_1 + f_2 + v_1 + v_2}{4}$ $v = \frac{\bar{f}}{n} + \frac{2\bar{m}}{n} + \frac{p(n-3)}{n}$

 \bar{m} = average of adjacent midpoints \bar{f} = average of adjacent face points n = valence of vertex

27

Catmull-Clark Subdivision

Catmull-Clark Subdivision

29

Catmull-Clark Subdivision

Catmull-Clark Subdivision

31

Continuity of Catmull-Clark

- In "ordinary" regions
 - \cdot Surface is fully $\,C^2\,$ everywhere except extraordinary points
- Fast evaluation by matrix exponentiation
 - See "Exact Evaluation Of Catmull-Clark Subdivision Surfaces At Arbitrary Parameter Values" by Jos Stam, SIGGRAPH 1998.
- At extraordinary points
- Surface is at least ${\cal C}^1$
- Curvature is Lipschitz continuous at extraordinary points

	·	

