CS- I 84: Computer Graphics
Lecture \#\|0: Clipping and Hidden Surfaces
Prof. James O'Brien University of California, Berkeley 20013:1010

\qquad
\qquad
Lecture \# IO: Clipping and Hidden Surfaces

Prof. James O'Brien University of California, Berkeley \qquad
\qquad
\qquad

Today

\qquad
\qquad
\qquad
\qquad

- Clipping \qquad
- Clipping to view volume \qquad
- Clipping arbitrary polygons
\qquad
Hidden Surface Removal
- Z-Buffer
\qquad
- BSPTrees \qquad
- Others \qquad
\qquad

	Clipping
- Stuff outside view volume should not be drawn	
\cdot	Too close: obscures view

	Clipping
	- Stuff outside view volume should not be drawn • Too close: obscures view • Too far: • Complexity • Z-buffer problems • Too high/low/right/left: • Memory errors • Broken algorithms • Complexity
Sunday, October 6,13	

Clipping Line to Line/Plane

Polygon Clip to Convex Domain

- Convex domain defined by collection of planes (or lines or hyper-planes)
- Planes have outward pointing normals
- Clip against each plane in turn \qquad
- Check for early/trivial rejection \qquad
\qquad
\qquad

Polygon Clipping

- Find the part of a polygon inside the clip window? \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Before Clipping

Sutherland-Hodgman Clipping

- Clip to each window boundary one at a time

\qquad

Sutherland-Hodgman Clipping

- Clip to each window boundary one at a time

\qquad

Sunday, October 6, 13

15

Sutherland-Hodgman Clipping

- Clip to each window boundary one at a time

\qquad

Polygon Clip to Convex Domain

Polygon Clip to Convex Domain

\qquad
\qquad
\qquad
\qquad
\qquad

- Sutherland-Hodgman algorithm
- Basically edge walking
- Clipping done often... should be efficient
- Liang-Barsky parametric space algorithm
- See text for clipping in 4D homogenized coordinates
\qquad
\qquad
\qquad

19

20
Sunday, October 6, 13

21

Hidden Surface Removal

- True 3D to 2D projection would put every thing
overlapping into the view plane.
- We need to determine what's in front and display only that.

Sunday, October 6, 13

23
$\left.\begin{array}{|l|l|}\hline & \text { Z_Buffers } \\ \hline & \\ \text { - Benefits } \\ \text { • Easy to implement } \\ \text { • Works for most any geometric primitive } \\ \text { • Parallel operation in hardware } \\ \text { - Limitations } \\ \text { • Quantization and aliasing artifacts } \\ \text { • Overfill } \\ \text { • Transparency does not work well }\end{array}\right]$

24
Sunday, October 6, 13

25

	A-Buffers
- Store sorted list of "fragments" at each pixel	
- Draw all opaque stuff first then transparent	
- Stuff behind full opacity gets ignored	
- Nice for antialiasing....	

27

Scan-line Algorithm

- Assume polygons don't intersect
- Each time an edge is crossed determine who's on top

\qquad

	Painter's Algorithm
- Sort Polygons Front-to-Back - Draw in order - Back-to-Front works also, but wasteful - How to sort quickly? - Intersecting polygons? - Cycles?	

29

BSP-Trees

Binary Space Partition Trees

- Split space along planes
- Allows fast queries of some spatial relations
- Draw Front-to-Back
- Draw same-side polygons first
- Draw root node polygon (if any)
- Draw other-side polygons last

