
CS-184: Computer Graphics

Lecture #9: Scan Conversion
Prof. James O’Brien

University of California, Berkeley
V2013-F-09-1.0

With additional slides based on those of Maneesh Agrawala

2

Today

• 2D Scan Conversion
• Drawing Lines
• Drawing Curves
• Filled Polygons
• Filling Algorithms

1

2
Tuesday, October 1, 13

3

Drawing a Line
• Basically, its easy... but for the details
• Lines are a basic primitive that needs to be done well...

4

Drawing a Line
• Basically, its easy... but for the details
• Lines are a basic primitive that needs to be done well...

From “A Procedural Approach to Style for NPR Line Drawing from 3D models,”
by Grabli, Durand, Turquin, Sillion

3

4
Tuesday, October 1, 13

5

Drawing a Line

6

Drawing a Line

5

6
Tuesday, October 1, 13

7

Drawing a Line
• Some things to consider
• How thick are lines?
• How should they join up?
• Which pixels are the right ones?

For example:

8

Drawing a Line

Inclusive
Endpoints

7

8
Tuesday, October 1, 13

9

Drawing a Line

y= m · x+b,x 2 [x1,x2]

m=
y2� y1
x2� x1

b= y1�m · x1

10

Drawing a Line

Δx= 1
Δy= m ·Δx

x=x1
y=y1
while(x<=x2)
 plot(x,y)
 x++
 y+=Dy

9

10
Tuesday, October 1, 13

11

Drawing a Line

Δx= 1
Δy= m ·Δx
After rounding

12

Drawing a Line

Δx= 1
Δy= m ·Δx

Accumulation of
roundoff errors

How slow is float-
to-int conversion?

y+= Δy

11

12
Tuesday, October 1, 13

13

Drawing a Line

|m| 1 |m| > 1

14

Drawing a Line
void drawLine-Error1(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 float y = y1

 while (x <= x2)

 setPixel(x,round(y),PIXEL_ON)

 x += 1
 y += m

Not exact math

Accumulates errors

13

14
Tuesday, October 1, 13

void drawLine-Error2(int x1,x2, int y1,y2)
!
 float m = float(y2-y1)/(x2-x1)
 int x = x1
 int y = y1
 float e = 0.0

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += m
 if (e >= 0.5)
 y+=1
 e-=1.0

15

No more rounding

Drawing a Line

16

Drawing a Line
void drawLine-Error3(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += float(y2-y1)/(x2-x1)
 if (e >= 0.0)
 y+=1
 e-=1.0

15

16
Tuesday, October 1, 13

17

Drawing a Line
void drawLine-Error4(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 float e = -0.5*(x2-x1) // was -0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += y2-y1 // was /(x2-x1)
 if (e >= 0.0) // no change
 y+=1
 e-=(x2-x1) // was 1.0

18

Drawing a Line
void drawLine-Error5(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1) // removed *0.5

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1) // added 2*
 if (e >= 0.0) // no change
 y+=1
 e-=2*(x2-x1) // added 2*

17

18
Tuesday, October 1, 13

19

Drawing a Line
void drawLine-Bresenham(int x1,x2, int y1,y2)
!
 int x = x1
 int y = y1
 int e = -(x2-x1)

 while (x <= x2)

 setPixel(x,y,PIXEL_ON)

 x += 1
 e += 2*(y2-y1)
 if (e >= 0.0)
 y+=1
 e-=2*(x2-x1)

Faster
Not wrong

x1 x2
0  m  1

20

Drawing Curves

y= f (x)

Only one value of y for each value of x...

19

20
Tuesday, October 1, 13

21

Drawing Curves
• Parametric curves
• Both x and y are a function of some third parameter

y= f (u)
x= f (u)

x= f(u)

u 2 [u0 . . .u1]

22

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

21

22
Tuesday, October 1, 13

23

•Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

24

•Draw curves by drawing line segments
• Must take care in computing end points for lines
• How long should each line segment be?
• Variable spaced points

Drawing Curves

x= f(u) u 2 [u0 . . .u1]

23

24
Tuesday, October 1, 13

25

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

26

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

25

26
Tuesday, October 1, 13

27

Drawing Curves
•Midpoint-test subdivision

|f(umid)� l(0.5)|

28

Drawing Curves
•Midpoint-test subdivision
• Not perfect
• We need more information for a guarantee...

|f(umid)� l(0.5)|

27

28
Tuesday, October 1, 13

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

P3

P2

P1

P3

P2

P1

P3

P2

P1

Filling Triangles
• Render an image of a geometric primitive by setting pixel colors

• Example: Filling the inside of a triangle

void SetPixel(int x, int y, Color rgba)

29

30
Tuesday, October 1, 13

Triangle Scan Conversion
• Properties of a good algorithm
 Symmetric
 Straight edges
 Antialiased edges
 No cracks between adjacent primitives
 MUST BE FAST!

P1
P2

P3

P4

Triangle Scan Conversion

P1
P2

P3

P4

• Properties of a good algorithm
 Symmetric
 Straight edges
 Antialiased edges
 No cracks between adjacent primitives
 MUST BE FAST!

31

32
Tuesday, October 1, 13

• Color all pixels inside triangle

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

P3

P2

P1

• Implicit equation for a line
 On line: 	
 ax + by + c = 0
 On right: 	
 ax + by + c < 0
 On left: 	
 ax + by + c > 0

P1

P2

Line Defines Two Halfspaces

L

33

34
Tuesday, October 1, 13

• Point is inside triangle if it is in positive halfspace of all three
boundary lines
 Triangle vertices are ordered counter-clockwise
 Point must be on the left side of every boundary line

Inside Triangle Test

P
L1

L2

L3

Inside Triangle Test
Boolean Inside(Triangle T, Point P)
{
 for each boundary line L of T {
 Scalar d = L.a*P.x + L.b*P.y + L.c;
 if (d < 0.0) return FALSE;
 }
 return TRUE;
}

L1

L2

L3

35

36
Tuesday, October 1, 13

• What is bad about this algorithm?

Simple Algorithm

void ScanTriangle(Triangle T, Color rgba){
 for each pixel P at (x,y){
 if (Inside(T, P))
 SetPixel(x, y, rgba);
 }
}

P3

P2

P1

Triangle Sweep-Line Algorithm
• Take advantage of spatial coherence
 Compute which pixels are inside using horizontal spans
 Process horizontal spans in scan-line order

• Take advantage of edge linearity
 Use edge slopes to update coordinates incrementally

dx
dy

37

38
Tuesday, October 1, 13

Triangle Sweep-Line Algorithm
void ScanTriangle(Triangle T, Color rgba){
 for each edge pair {
 initialize xL, xR;
 compute dxL/dyL and dxR/dyR;
 for each scanline at y

 for (int x = ceil(xL); x <= xR; x++)
 SetPixel(x, y, rgba);
 xL += dxL/dyL;
 xR += dxR/dyR;
 }
}

dxR

dyR
Bresenham’s algorithm
works the same way,
but uses only integer

operations!

dxL

dyL

xL xR

40

Antialiasing
Desired solution of an integral over pixel

39

40
Tuesday, October 1, 13

Hardware Antialiasing
Supersample pixels
• Multiple samples per pixel
• Average subpixel intensities (box filter)
• Trades intensity resolution for spatial resolution

41

P1

P2

P3

Optimize for Triangles

• Spilt triangle into two parts
• Two edges per part
• Y-span is monotonic

• For each row
• Interpolate span

• Interpolate barycentric
coordinates

42

41

42
Tuesday, October 1, 13

Hardware Scan Conversion
• Convert everything into triangles
 Scan convert the triangles

Polygon Scan Conversion
• Fill pixels inside a polygon
 Triangle
 Quadrilateral
 Convex
 Star-shaped
 Concave
 Self-intersecting
 Holes

What problems do we encounter with arbitrary polygons?

43

44
Tuesday, October 1, 13

Polygon Scan Conversion
• Need better test for points inside polygon
 Triangle method works only for convex polygons

Convex Polygon

L1

L2

L3

L4
L5

L1

L2

L3A

L4
L5

Concave Polygon

L3B

Inside Polygon Rule

Concave Self-Intersecting With Holes

• What is a good rule for which pixels are inside?

45

46
Tuesday, October 1, 13

Inside Polygon Rule

Concave Self-Intersecting With Holes

• Odd-parity rule
 Any ray from P to infinity crosses odd number of edges

48

Inside/Outside Testing
The Polygon Non-exterior

Non-zero winding Parity

47

48
Tuesday, October 1, 13

49

Filled Polygons

50

Filled Polygons

49

50
Tuesday, October 1, 13

51

Filled Polygons

52

Filled Polygons

51

52
Tuesday, October 1, 13

53

Filled Polygons

54

Filled Polygons

53

54
Tuesday, October 1, 13

55

Filled Polygons

56

Filled Polygons
Treat (scan y = vertex y) as (scan y >
vertex y)

55

56
Tuesday, October 1, 13

57

Filled Polygons

Horizontal edges

58

Filled Polygons

Horizontal edges

57

58
Tuesday, October 1, 13

59

• “Equality Removal” applies to all vertices
• Both x and y coordinates

Filled Polygons

60

• Final result:

Filled Polygons

59

60
Tuesday, October 1, 13

61

•Who does this pixel belong to?

Filled Polygons

1

2

3
4

5

6

62

Drawing a Line
• How thick?

• Ends?

Butt

Round

Square

61

62
Tuesday, October 1, 13

63

Drawing a Line
• Joining?

Ugly Bevel Round Miter

64

Flood Fill

63

64
Tuesday, October 1, 13

65

Flood Fill

Span-Based Algorithm
Definition: a run is a horizontal span of identically colored pixels

1. Start at pixel “s”, the seed.
2. Find the run containing “s” (“b” to “a”).
3. Fill that run with the new color.
4. Search every pixel above run, looking for pixels of interior color
5. For each one found,
6. Find left side of that run (“c”), and push that on a stack.
7. Repeat lines 4-7 for the pixels below (“d”).
8. Pop stack and repeat procedure with the new seed

The algorithm finds runs ending at “e”, “f”, “g”, “h”, and “i”

s ba
c

d
e f g
h

i

65

66
Tuesday, October 1, 13

