CS-184: Computer Graphics

Lecture #8: Projection

Prof. James O'Brien University of California, Berkeley

V2013-F-08-1.

1

Today

- Windowing and Viewing Transformations
 - Windows and viewports
 - Orthographic projection
- Perspective projection

Screen Space

- Monitor has some number of pixels
- e.g. 1024 x 768
- Some sub-region used for given program
- You call it a window
- · Let's call it a viewport instead

[1024, 768]

[1024, 768]

[690,705]

[60, 350]

[0, 0][0, 0] 3

Screen Space

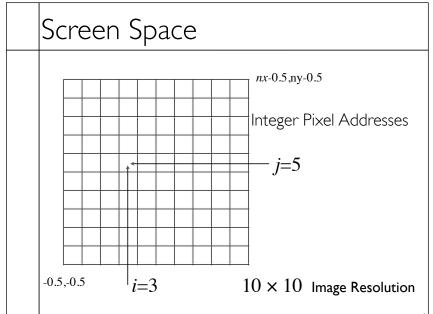
- May not really be a "screen"
 - Image file
 - Printer
- Other
- Little pixel details
- Sometimes odd
- Upside down
- Hexagonal

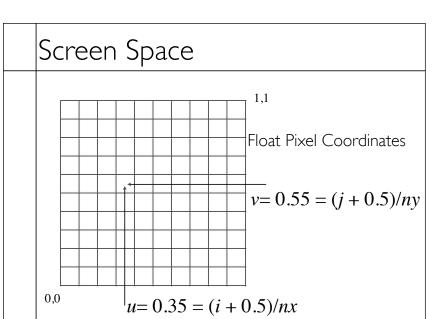
From Shirley textbook.

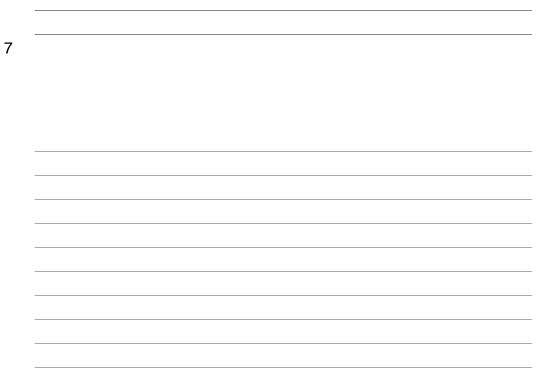
Screen Space

- Viewport is somewhere on screen
 - You probably don't care where
 - Window System likely manages this detail
- Sometimes you care exactly where
- Viewport has a size in pixels
 - Sometimes you care (images, text, etc.)
- Sometimes you don't (using high-level library)

5







Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]

reflecty
$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

$$(-1,-1)$$

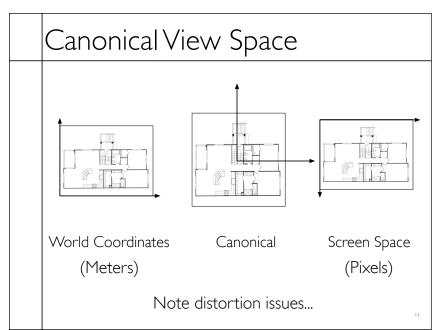
$$(-1,-$$

$$\begin{bmatrix} i \\ j \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{n_x}{2} & 0 & \frac{n_x - 1}{2} \\ 0 & \frac{n_y}{2} & \frac{n_y - 1}{2} \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ 1 \end{bmatrix}$$

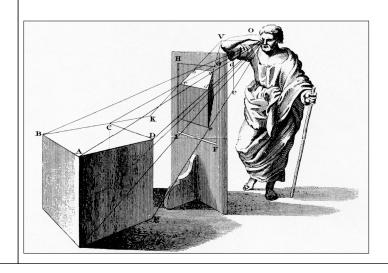
Remove minus for right-side-up

Canonical View Space

- Canonical view region
- 2D: [-1,-1] to [+1,+1]
- Define arbitrary window and define objects
- Transform window to canonical region
- Do other things (we'll see clipping latter)
- Transform canonical to screen space
- Draw it.



Projection • Process of going from 3D to 2D • Studies throughout history (e.g. painters) • Different types of projection Many special cases in books just • Linear one of these two... Orthographic Perspective Nonlinear Orthographic is special case of perspective...



13

Ray Generation vs. Projection

Viewing in ray tracing

- start with image point
- compute ray that projects to that point
- · do this using geometry

Viewing by projection

- start with 3D point
- compute image point that it projects to
- do this using transforms

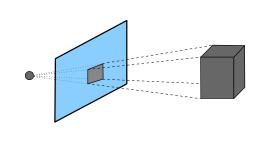
Inverse processes

• ray gen. computes the preimage of projection

11		

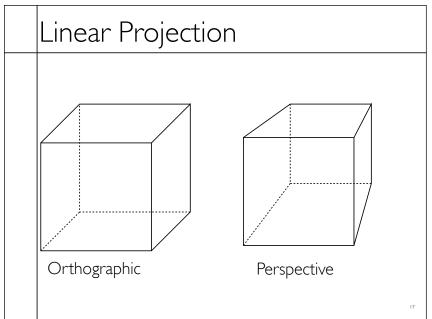
Linear Projection

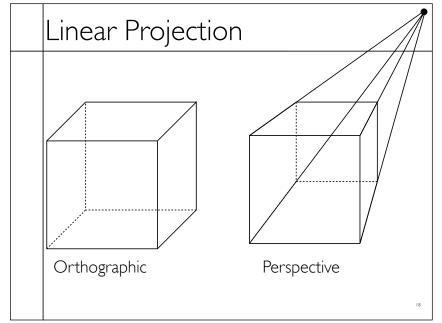
- Projection onto a planar surface
- Projection directions either
 - Converge to a point
- Are parallel (converge at infinity)



15

Linear Projection • A 2D view Perspective Orthographic



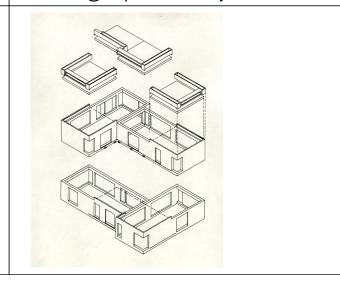


Saturday, September 28, 13

Linear Projection • A 2D view Note how different things can be seen Parallel lines "meet" at infinity Perspective Orthographic

19

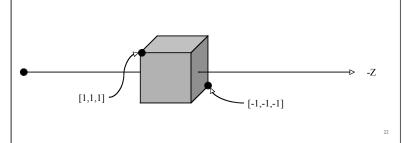
Orthographic Projection No foreshortening Parallel lines stay parallel Poor depth cues



21

Canonical View Space

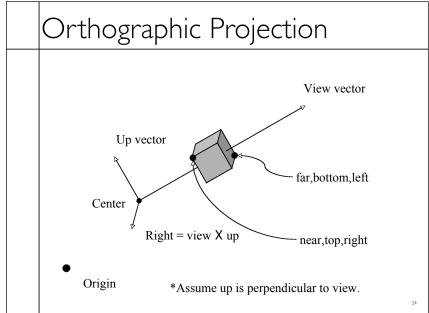
- Canonical view region
- 3D: [-1,-1,-1] to [+1,+1,+1]
- Assume looking down -Z axis
- Recall that "Z is in your face"



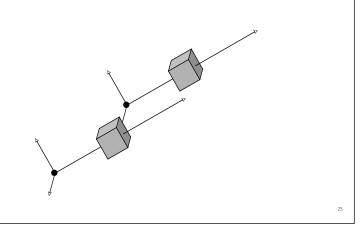
Saturday, September 28, 13

• Convert arbitrary view volume to canonical

23



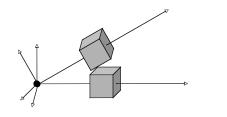
• Step 1: translate center to origin



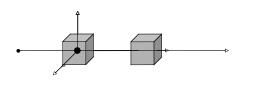
25

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$



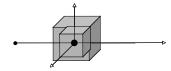
- Step 1: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$
- Step 3: center view volume



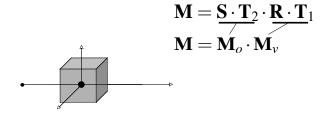
27

Orthographic Projection

- Step I: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size



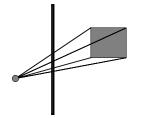
- Step 1: translate center to origin
- Step 2: rotate \emph{view} to $-\mathbf{Z}$ and \emph{up} to $+\mathbf{Y}$
- Step 3: center view volume
- Step 4: scale to canonical size



29

Perspective Projection

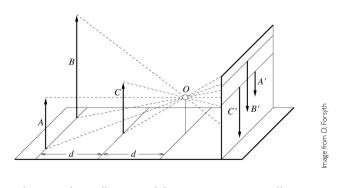
- Foreshortening: further objects appear smaller
- Some parallel line stay parallel, most don't
- Lines still look like lines
- Z ordering preserved (where we care)



Pinhole a.k.a center of projection

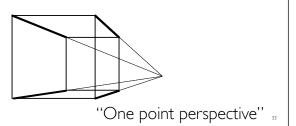
31

Perspective Projection



Foreshortening: distant objects appear smaller

- Vanishing points
- Depend on the scene
- Not intrinsic to camera



33

Perspective Projection

- Vanishing points
- Depend on the scene
- Nor intrinsic to camera



Perspective Projection • Vanishing points • Depend on the scene • Not intrinsic to camera

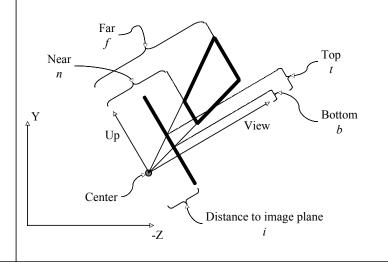
35

36

"Three point perspective" 35

Perspective Projection View Frustum

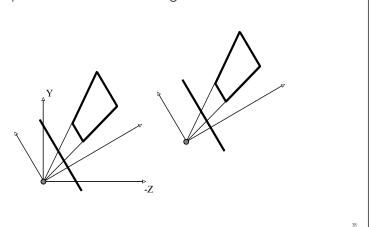
Saturday, September 28, 13



37

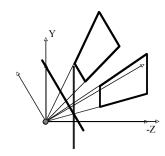
Perspective Projection

• Step 1:Translate *center* to origin



Saturday, September 28, 13

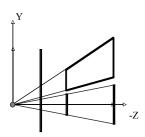
- Step I:Translate *center* to origin
- Step 2: Rotate \emph{view} to $\emph{-}\mathbf{Z}$, \emph{up} to $\emph{+}\mathbf{Y}$



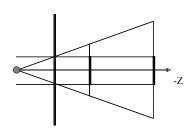
39

Perspective Projection

- Step 1:Translate *center* to origin
- Step 2: Rotate \emph{view} to $-\mathbf{Z}$, \emph{up} to $+\mathbf{Y}$
- Step 3: Shear center-line to -Z axis



- Step 1:Translate *center* to origin
- Step 2: Rotate *view* to **-Z**, *up* to **+Y**
- Step 3: Shear center-line to **-Z** axis
- Step 4: Perspective

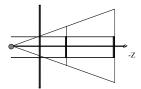


$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & \frac{i+f}{i} & f \\ 0 & 0 & \frac{-1}{i} & 0 \end{bmatrix}$$

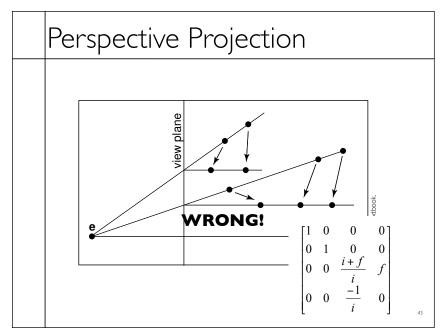
41

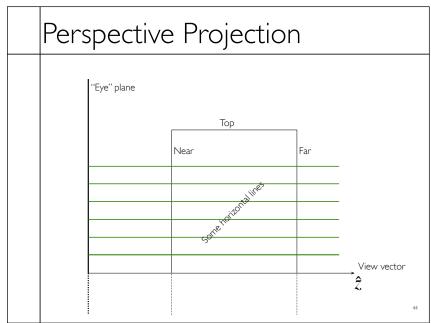
Perspective Projection

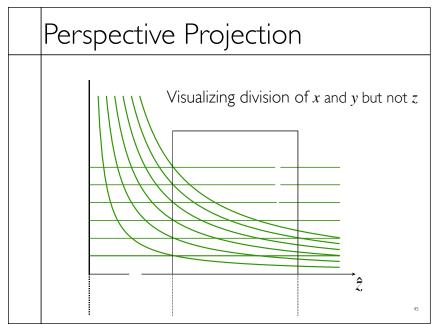
- Step 4: Perspective
- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f
- Points at z=0 goto $z=\pm\infty$
- Points at $z=-\infty$ goto z=-(i+f)
- x and y values divided by -z/i
- Straight lines stay straight
- Depth ordering preserved in [-i,-f]
- Movement along lines distorted

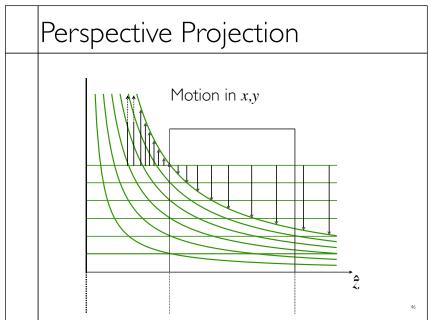


[1	0	0	0]
0	1	$0\\ \underline{i+f}$	0
0	0	$\frac{i+f}{i}$	f
0	0	$\frac{i}{-1}$	0

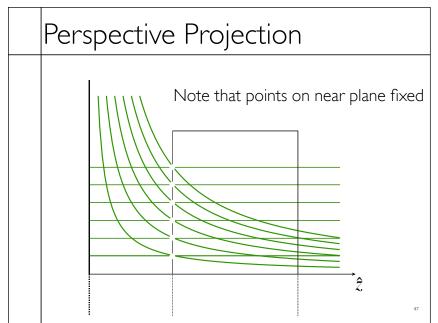


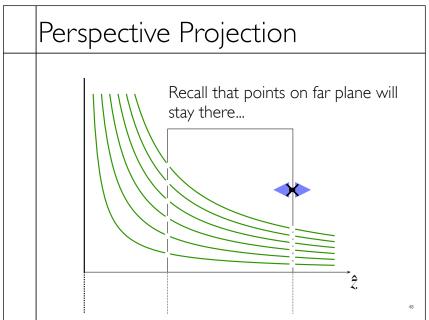


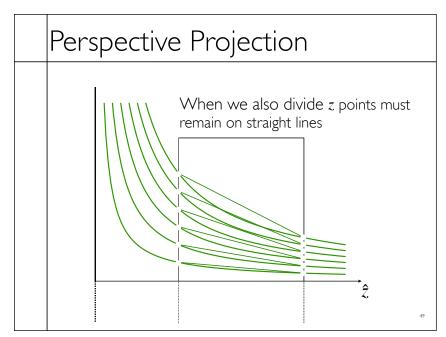


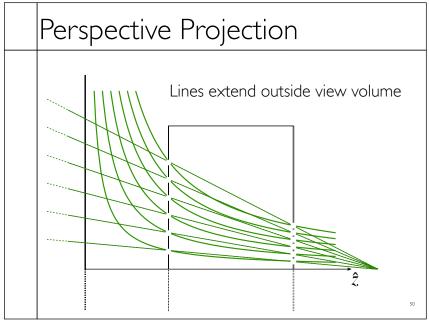


Saturday, September 28, 13

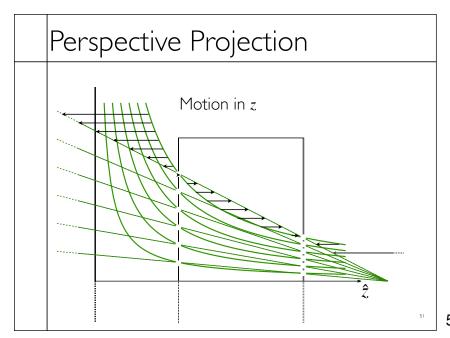


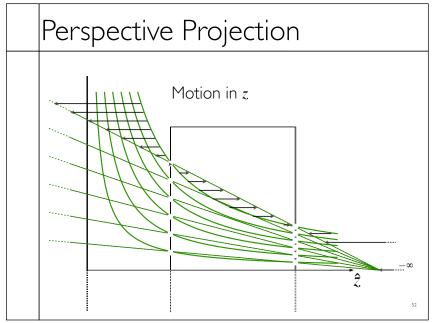




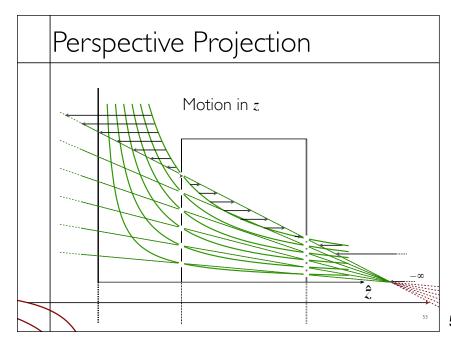


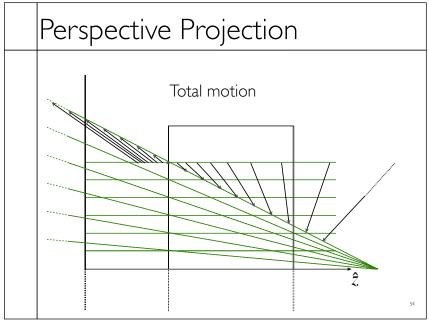
Saturday, September 28, 13



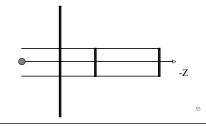


Saturday, September 28, 13





- Step 1:Translate *center* to orange
- Step 2: Rotate *view* to **-Z**, *up* to **+Y**
- Step 3: Shear center-line to -Z axis
- Step 4: Perspective
- Step 5: center view volume
- Step 6: scale to canonical size



 \mathbf{M}_{p}

 M_o

55

Perspective Projection

•	Step	1:Trans	late c	enter 1	to	orange
---	------	---------	---------------	---------	----	--------

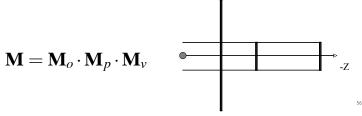
 M_{ν} • Step 2: Rotate view to -Z, up to +Y

• Step 3: Shear center-line to -Z axis

• Step 4: Perspective

• Step 5: center view volume

• Step 6: scale to canonical size



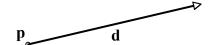
- There are other ways to set up the projection matrix
 - View plane at z=0 zero
 - Looking down another axis
- etc...
- Functionally equivalent

57

Vanishing Points

• Consider a ray:

$$\mathbf{r}(t) = \mathbf{p} + t \, \mathbf{d}$$



Vanishing Points

- Ignore **Z** part of matrix
- ullet X and Y will give location in image plane
- Assume image plane at z=-i

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ \text{whatever} \\ 0 & 0 & -1 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$$

59

Vanishing Points

$$\begin{bmatrix} I_x \\ I_y \\ I_w \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} x \\ y \\ -z \end{bmatrix}$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix}$$

Vanishing Points

Assume

$$d_z = -1$$

$$\begin{bmatrix} I_x / I_w \\ I_y / I_w \end{bmatrix} = \begin{bmatrix} -x/z \\ -y/z \end{bmatrix} = \begin{bmatrix} \frac{p_x + td_x}{-p_z + t} \\ \frac{p_y + td_y}{-p_z + t} \end{bmatrix}$$

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

61

Vanishing Points

$$\lim_{t \to \pm \infty} = \begin{bmatrix} d_x \\ d_y \end{bmatrix}$$

- \bullet All lines in direction \mathbf{d} converge to same point in the image plane -- the vanishing point
- Every point in plane is a v.p. for some set of lines
- Lines parallel to image plane ($d_z = 0$ vanish at infinity

What's a horizon?

Perspective Tricks

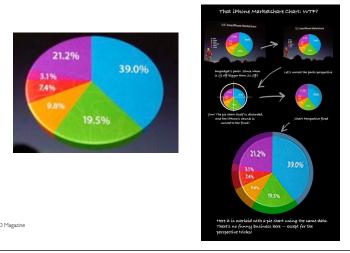
63

Right Looks Wrong (Sometimes)



from Conection of Geometric Perceptual Distortions in Pictures, Zonin and Barr SIGGRAPH 1995

Right Looks Wrong (Sometimes)



65

Strangeness

The Ambassadors by Hans Holbein the Younge

Strangeness The Ambassadors by Hars Holben the Younger

67

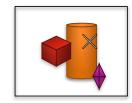
Pick object by picking point on screen • Pick object by picking point on screen • Compute ray from pixel coordinates.

Ray Picking

• Transform from World to Screen is:

• Inverse: $\begin{bmatrix} I_x \\ I_y \\ I_z \\ I_w \end{bmatrix} = \mathbf{M} \begin{bmatrix} W_x \\ W_y \\ W_z \\ W_w \end{bmatrix}$

• What **Z** value? $\begin{bmatrix} w_x \\ W_y \\ W_z \\ W \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} I_x \\ I_y \\ I_z \end{bmatrix}$



69

Ray Picking

• Recall that:

Depends on screen details, YMMV General idea should translate...

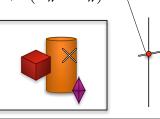
- Points at z=-i stay at z=-i
- Points at z=-f stay at z=-f

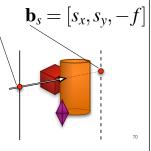
$$\mathbf{r}(t) = \mathbf{p} + t \mathbf{d}$$

$$\mathbf{r}(t) = \mathbf{a}_w + t(\mathbf{b}_w - \mathbf{a}_w)$$

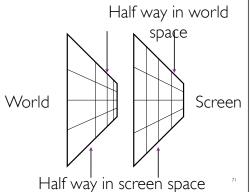
$$\mathbf{b}_s = [s_x, s_y, -i]$$

$$\mathbf{b}_s = [s_x, s_y, -i]$$



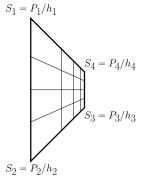


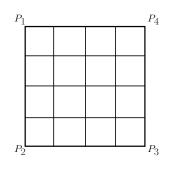
- Recall depth distortion from perspective
 - Interpolating in screen space different than in world
 - Ok, for shading (mostly)
- Bad for texture

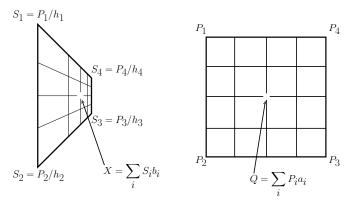


71

Depth Distortion



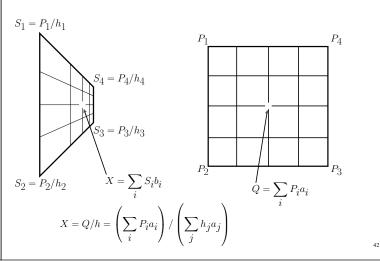


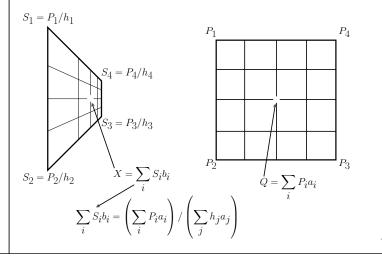


We know the $\ {\it S_i}$, $\ {\it P_i}$, and $\ {\it b_i}$, but not the a_i .

73

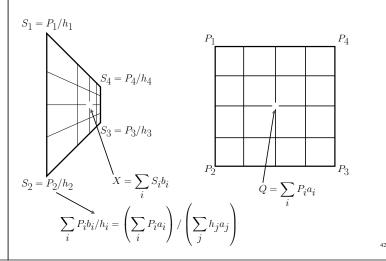
Depth Distortion

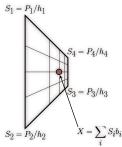


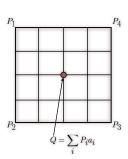


75

Depth Distortion







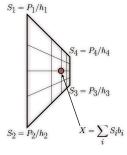
$$\sum_{i} P_{i}b_{i}/h_{i} = \left(\sum_{i} P_{i}a_{i}\right) / \left(\sum_{j} h_{j}a_{j}\right)$$

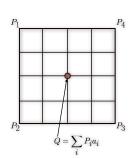
Independent of given vertex locations.

$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad \forall i$$

77

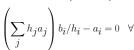
Depth Distortion



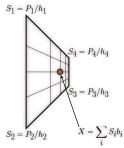


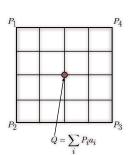
$$b_i/h_i = a_i/\left(\sum_j h_j a_j\right) \quad orall i$$

Linear equations in the a_i .



7	•





Linear equations in the a_i .

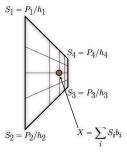
$$\left(\sum_{j} h_{j} a_{j}\right) b_{i} / h_{i} - a_{i} = 0 \quad \forall i$$

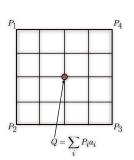
Not invertible so add some extra constraints.

$$\sum_{i} a_{i} = \sum_{i} b_{i} =$$

79

Depth Distortion





For a line:

 $a_1 = h_2 b_i / (b_1 h_2 + h_1 b_2)$

For a triangle: $a_1 = h_2 h_3 b_1 / (h_2 h_3 b_1 + h_1 h_3 b_2 + h_1 h_2 b_3)$

Obvious Permutations for other coefficients.