CS-I 84: Computer Graphics

Lecture \#7: BSP and AABB Trees

Prof. James O'Brien University of California, Berkeley
val3:80:10

1

BSP-Trees

Binary Space Partition Trees

- Split space along planes
- Allows fast queries of some spatial relations
- Simple construction algorithm
- Select a plane as sub-tree root
- Everything on one side to one child
- Everything on the other side to other child
- Use random polygon for splitting plane
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

	BSP_TreeS
- Visibility Traversal • Chiliation of in-order-traversal • Sub-tree root • Child two • Chilect "child one" based on location of vame viewpoint of sub-tree root as viewpoint	

10

Tuesday, September 24, 13

11

Your Ray Tracer

RayTrace (image)
For ray in camera
image[pixel] = Trace(ray)
Trace (ray)
t_hit = infinity
For object in scene
t_hit $=$ min (object.intersect (ray), t_hit) shade at t_hit
possible calls to Trace(new_ray)
\qquad

Your Ray Tracer

RayTrace(image)

For ray in camera
image[pixel] = Trace (ray)

Trace (ray)

t_hit = infinity

For object in scene

t_hit = min(object.intersect (ray), t_hit)
shade at t_hit
possible calls to Trace(new_ray)

Your Ray Tracer

RayTrace (image)
For ray in camera
image[pixel] = Trace(ray)
Trace (ray)
t_hit = infinity

For object in scene

t_hit $=$ min(object.intersect (ray), t_hit)
shade at t_hit
possible calls to Trace(new_ray)
\qquad

- Bounding shape completely encloses associated object
- Rays cannot hit object w/o intersecting bounding shape
- Two objects cannot collide if shapes don't overlap - Simplicity -vs- tightness

Axis-Aligned Bounding Boxes

- Axis-aligned bounding box defined by min and max x, y, z
\qquad

Axis-Aligned Bounding Boxes

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

17

| Axis-Aligned Bounding Boxes |
| :--- | :--- |
| Min/max of
 transformed BB points
 Constant time
 Adds slop
 Cumulative slop if multiple transforms occur sequentially
 why would we do this? $/$ |

18
Tuesday, September 24, 13

19

20
Tuesday, September 24, 13

21

24

Tuesday, September 24, 13

25

26
AABBTrees

Transformed Bounding Boxes

28
AABB Trees

31

Ray Test Against Bound Tree

- RayHitSubTree (\&ray, node)
- If RayHitsBB(ray, node.xfBB)
- ixfRay $=$ Inverse(node.xf)*ray
- If RayHitsBB(ixfRay, node.BB)
- If node is group
- Foreach child in node.children
- RayHitSubTree (ixfRay, child)
- else // node not group
- RayHitGeometry (ixfRay, node.geom)
-ray.collisionInfo.update (ixfRay)
\qquad

33

34

Voxels/Octree	
VOXELS - OCTREE (Illustrated with Pixels and Quadtree)	- http://www.youtube.com/ watch?v=sciLNxmMTXM

