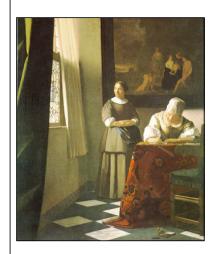
CS-184: Computer Graphics Lecture #6: Raytracing

Prof. James O'Brien University of California, Berkeley

V2013-F-06-1

- 1

Today


- Raytracing
 - Shadows and direct lighting
 - Reflection and refraction
 - Antialiasing, motion blur, soft shadows, and depth of field
- Intersection Tests
- Ray-primitive

Raytracing Assignment

3

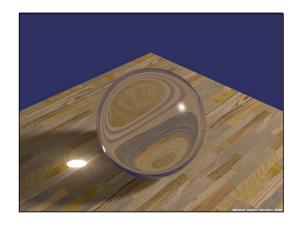
Light in an Environment

Lady writing a Letter with her Maid National Gallery of Ireland, Dublin Johannes Vermeer, 1670

.

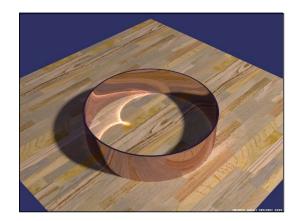
Global Illumination Effects

PCKTWTCH Kevin Odhner POV-Rav

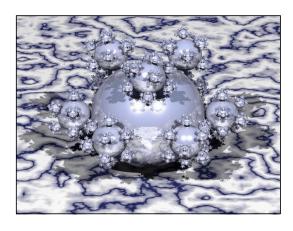

5

Global Illumination Effects

A Philco 6Z4 Vacuum Tube Steve Anger POV-Ray


Global Illumination Effects

Caustic Sphere Henrik Jensen (refraction caustic)

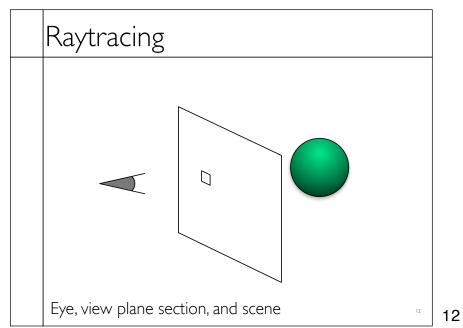

7

Global Illumination Effects

Caustic Ring Henrik Jensen (reflection caustic)

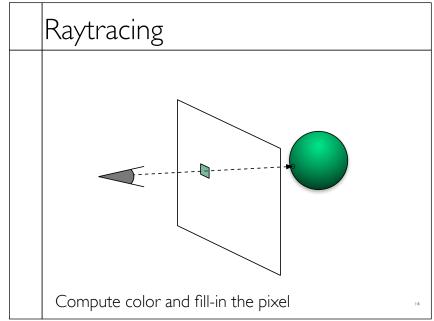
Global Illumination Effects

Sphere Flake Henrik Jensen


9

Sunday, September 22, 13

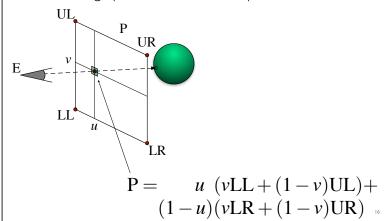
Raytracing Scan conversion 3D → 2D → Image Based on transforming geometry Raytracing 3D → Image Geometric reasoning about light rays


11

Sunday, September 22, 13

Raytracing Launch ray from eye through pixel, see what it hits

13

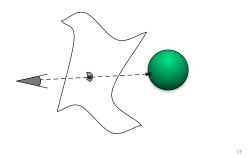

Raytracing

- Basic tasks
- Build a ray
- Figure out what a ray hits
- Compute shading

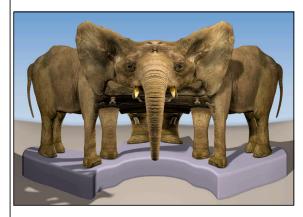
15

Building Eye Rays

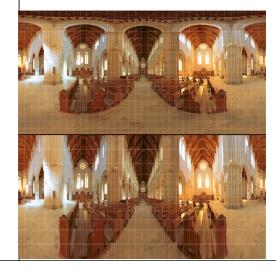
• Rectilinear image plane build from four points



Sunday, September 22, 13


Building Eye Rays

- Nonlinear projections
- Non-planar projection surface
- Variable eye location


17

Examples

Multiple-Center-of-Projection Images
P. Rademacher and G. Bishop
SIGGRAPH 1998

Examples

Spherical and Cylindrical Projections Ben Kreunen From Big Ben's Panorama Tutorials

19


Building Eye Rays

• Ray equation

$$R(t) = E + t(P - E)$$

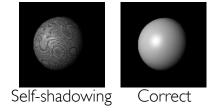
$$t \in [1 \ldots + \infty]$$

- \cdot Through eye at $\quad t=0$
- At pixel center at t=1

Shadow Rays

• Detect shadow by rays to light source

$$R(t) = S + t(L - S)$$
 $t \in [\epsilon ... 1)$
Lights


Shadow ray - no shadow Shadow ray - shadow

Incoming (eye) ray ______

21

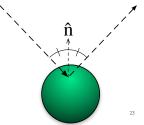
Shadow Rays

- Test for occluder
- No occluder, shade normally (e.g. Phong model)
- $\bullet\,$ Yes occluder, skip light (don't skip ambient)
- Self shadowing
- Add shadow bias
- Test object ID

Reflection Rays

Recursive shading

• Ray bounces off object


$$\mathbf{R}(t) = \mathbf{S} + t\,\mathbf{B}$$

• Treat bounce rays (mostly) like eye rays

$$t \in [\varepsilon \ldots + \infty)$$

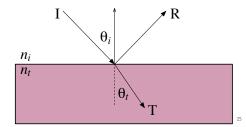
• Shade bounce ray and return color

- Shadow rays
- Recursive reflections
- Add color to shading at original point
 - Specular or separate reflection coefficient \

23

Reflection Rays

- Recursion Depth
- Truncate at fixed number of bounces
- Multiplier less than J.N.D.



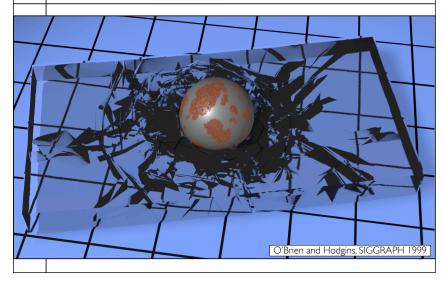
Refracted Rays

- Transparent materials bend light
- Snell's Law $\frac{n_i}{n_t} = \frac{\sin \theta_t}{\sin \theta_i}$ (see clever formula in text...)

 $\sin \theta_t > 1$ Total (internal) reflection

25

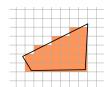
Refracted Rays

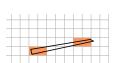

- ullet Coefficient on transmitted ray depends on ullet
 - Schlick approximation to Fresnel Equations

$$k_t(\theta_i) = k_0 + (1 - k_0)(1 - \cos \theta_i)^5$$

$$k_0 = \left(\frac{n_t - 1}{n_t + 1}\right)^2$$

- Attenuation
 - Wavelength (color) dependant
 - Exponential with distance

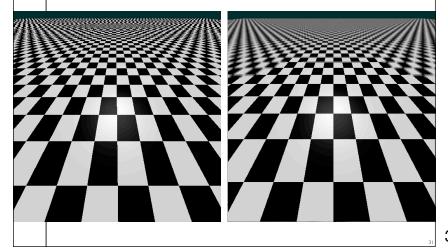

Refracted Rays

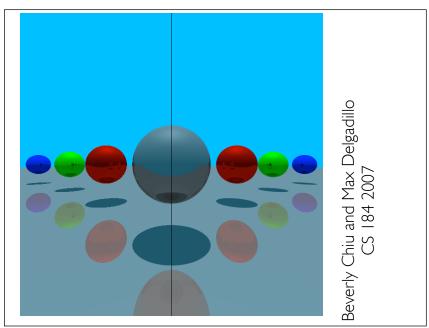


27

Anti-Aliasing

- Boolean on/off for pixels causes problems
 - Consider scan conversion algorithm:

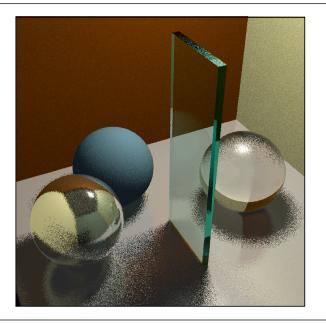

- · Compare to casting a ray through each pixel center
- Recall Nyquist Theorem
- Sampling rate ≥ twice highest frequency

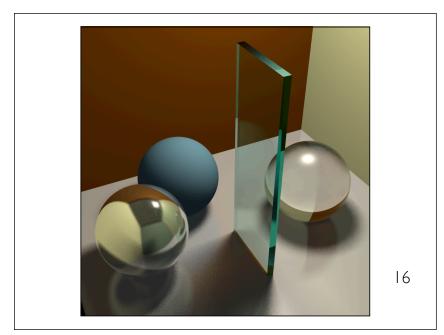

Anti-Aliasing • Desired solution of an integral over pixel

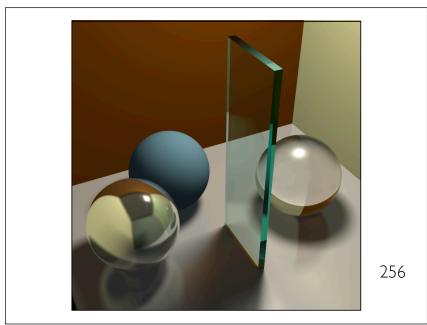
29

"Distributed" Raytracing • Send multiple rays through each pixel One Sample 5x5 Grid 5x5 Jittered Grid • Average results together • Jittering trades aliasing for noise

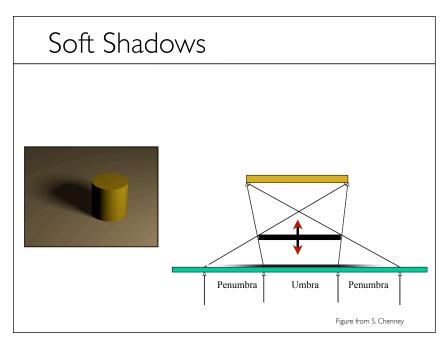
"Distributed" Raytracing

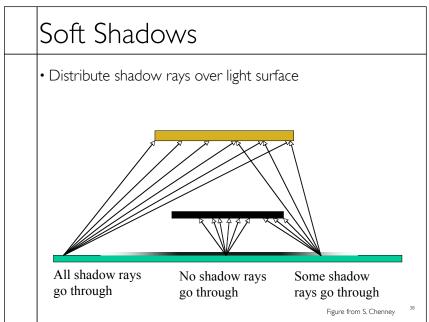


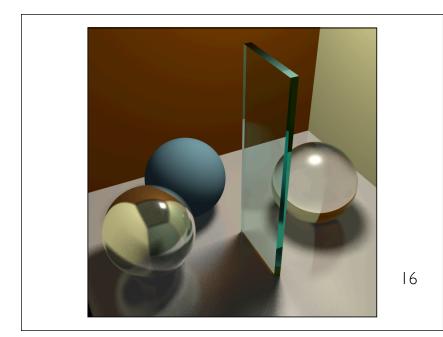

Sunday, September 22, 13


"Distributed" Raytracing

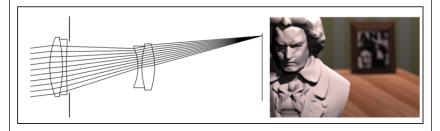
- Use multiple rays for reflection and refraction
 - At each bounce send out many extra rays
 - Quasi-random directions
 - Use BRDF (or Phong approximation) for weights
- How many rays?


33





Sunday, September 22, 13



39

Motion Blur • Distribute rays over time • More when we talk about animation... Pool Balls Tom Porter RenderMan

Depth of Field

Jittered rays for DoF

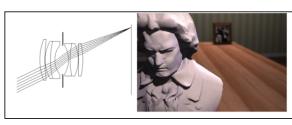
Kolb, Mitchell, and Hanrahan SIGGRAPH 1995

41

Depth of Field

No DoF

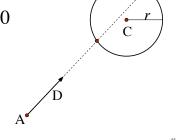
Multiple images for DoF



More rays

Even more rays

Other Lens Effects


Kolb, Mitchell, and Hanrahan 43 SIGGRAPH 1995 43

Ray -vs- Sphere Test


- Ray equation: R(t) = A + tD
- Implicit equation for sphere: $|\mathbf{X} \mathbf{C}|^2 r^2 = 0$
- Combine:

$$|\mathbf{R}(t) - \mathbf{C}|^2 - r^2 = 0$$

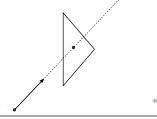
 $|\mathbf{A} + t\mathbf{D} - \mathbf{C}|^2 - r^2 = 0$

 \bullet Quadratic equation in t

Ray -vs- Sphere Test

45

Ray -vs-Triangle


- Ray equation: R(t) = A + t D
- Triangle in barycentric coordinates:

$$X(\beta,\gamma) = V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1)$$

• Combine:

$$V_1 + \beta(V_2 - V_1) + \gamma(V_3 - V_1) = A + t D$$

- Solve for β , γ , and t
- 3 equations 3 unknowns
- Beware divide by near-zero
- Check ranges

