CS-I 84: Computer Graphics

Lecture \#4:2DTransformations

Prof. James O'Brien
University of California, Berkeley
valisorat

Today

2D Transformations

- "Primitive" Operations
- Scale, Rotate, Shear, Flip, Translate
- Homogenous Coordinates
- SVD
- Start thinking about rotations...

Sunday, September 15, 13
$\left.\begin{array}{|l|l|}\hline & \text { Introduction } \\ \hline \text { - Transformation: } \\ \text { An operation that changes one configuration into another } \\ \text { - For images, shapes, etc. } \\ \text { A geometric transformation maps positions that define the object to } \\ \text { other positions } \\ \text { Linear transformation means the transformation is defined by a linear } \\ \text { function.... which is what matrices are good for. }\end{array}\right]$
\qquad

Some Examples

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Mapping Function

$f(\mathbf{p})=\mathbf{p}^{\prime} \begin{aligned} & \text { Maps points in original image } \mathbf{p}=(\mathbf{x}, \mathbf{y}) \\ & \text { to point in transformed image } \mathbf{p}^{\prime}=\left(\mathbf{x}^{\prime}, \mathbf{y}^{\prime}\right)\end{aligned}$

\qquad

Sunday, September 15, 13

Sunday, September 15, 13

\qquad

11

12

Sunday, September 15, 13

	Linear is Linear
- Polygons defined by points	
- Edges defined by interpolation between two points	
- Interior defined by interpolation between all points	
- Linear interpolation	

13

\qquad

	Linear is Linear
- Composing two linear function is still linear	
- Transform polygon by transforming vertices	
$f(x)=a+b x \quad g(f)=c+d f$	
$g(x)=c+d f(x)=c+a d+b d x$	
$g(x)=a^{\prime}+b^{\prime} x$	

15

Points in Space

- Represent point in space by vector in R^{n}
- Relative to some origin!
- Relative to some coordinate axes!
- The choice of coordinate system is arbitrary and should be convenient.
- Later we'll add something extra...
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

	Basic Transformations
- Basic transforms are: rotate, scale, and translate	
Shear is a composite transformation!	

17
Linear Functions in 2D
$x^{\prime}=f(x, y)=c_{1}+c_{2} x+c_{3} y$
$y^{\prime}=f(x, y)=d_{1}+d_{2} x+d_{3} y$
$\left[\begin{array}{l}x^{\prime} \\ y^{\prime}\end{array}\right]=\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]+\left[\begin{array}{l}M_{x x} M_{x y} \\ M_{y x} M_{y y}\end{array}\right] \cdot\left[\begin{array}{l}x \\ y\end{array}\right]$
$\mathbf{x}^{\prime}=\mathbf{t}+\mathbf{M} \cdot \mathbf{x}$

Sunday, September 15, 13

19

Sunday, September 15, 13

Rotations	
- Preserve lengths and distance to origin - Rotation matrices are orthonormal - $\operatorname{Det}(\mathbf{R})=1 \neq-1$ - In 2D rotations commute... - But in 3D they won't!	
	${ }^{21}$

Sunday, September 15, 13

	ScaleS
	Diagonal matrices - Diagonal parts are scale in X and scale in Y directions - Two negatives make a positive (180 deg. rotation) - Really, axis-aligned scales

Shears

$$
\begin{aligned}
& \bigwedge_{\text {Shear }} \mathbf{p}^{\prime}=\left[\begin{array}{cc}
1 & H_{y x} \\
H_{x y} & 1
\end{array}\right] \mathbf{p}
\end{aligned}
$$

\qquad

[^0]| | Shears |
| :--- | :--- |
| | |
| - Shears are not really primitive transforms | |
| - Related to non-axis-aligned scales | |
| - More shortly..... | |

Translation

- This is the not-so-useful way:
$\leadsto \rightarrow \mathbf{p}^{\prime}=\mathbf{p}+\left[\begin{array}{l}t_{x} \\ t_{y}\end{array}\right]$
Translate
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Note that its not like the others. \qquad

Arbitrary Matrices

- For everything but translations we have:

$$
\mathbf{x}^{\prime}=\mathbf{A} \cdot \mathbf{x}
$$

- Soon, translations will be assimilated as well
-What does an arbitrary matrix mean?

27

Singular Value Decomposition

- For any matrix, \mathbf{A}, we can write SVD:

$\mathbf{A}=\mathbf{Q S R}^{\boldsymbol{\top}}$

where \mathbf{Q} and \mathbf{R} are orthonormal and \mathbf{S} is diagonal

- Can also write Polar Decomposition
$\mathbf{A}=\mathbf{P R S R}^{\top}$
where \mathbf{P} is also orthonormal $\mathbf{P}=\mathbf{Q} \mathbf{R}^{\boldsymbol{T}}$
\qquad

	Decomposing Matrices
- We can force \mathbf{P} and \mathbf{R} to have Det=1 so they are rotations	
- Any matrix is now:	
• Rotation:Rotation:Scale:Rotation	
- See, shear is just a mix of rotations and scales	

29

Composition

- Matrix multiplication composites matrices

$$
\mathbf{p}^{\prime}=\mathbf{B A p}
$$

"Apply \mathbf{A} to \mathbf{p} and then apply \mathbf{B} to that result."

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p})=(\mathbf{B A}) \mathbf{p}=\mathbf{C} \mathbf{p}
$$

- Several translations composted to one
- Translations still left out...

$$
\mathbf{p}^{\prime}=\mathbf{B}(\mathbf{A p}+\mathbf{t})=\mathbf{p}+\mathbf{B} \mathbf{t}=\mathbf{C} \mathbf{p}+\mathbf{u}
$$

31

Homogeneous Coordinates

- Move to one higher dimensional space
- Append a 1 at the end of the vectors

$$
\mathbf{p}=\left[\begin{array}{l}
p_{x} \\
p_{y}
\end{array}\right] \quad \widetilde{\mathbf{p}}=\left[\begin{array}{c}
p_{x} \\
p_{y} \\
1
\end{array}\right]
$$

- For directions the extra coordinate is a zero
\qquad

Homogeneous Translatior
$\widetilde{\mathbf{p}}^{\prime}=\left[\begin{array}{lll}1 & 0 & t_{x} \\ 0 & 1 & t_{y} \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}p_{x} \\ p_{y} \\ 1\end{array}\right]$
$\widetilde{\mathbf{p}}^{\prime}=\widetilde{\mathbf{A}} \widetilde{\mathbf{p}}$

The tildes are for clarity to distinguish homogenized from non-homogenized
vectors.
33

| Compositing Matrices |
| :--- | :--- |
| -Rotations and scales always about the origin |
| - How to rotate/scale about another point? |

35

Rotate About Arb. Point

- Step I:Translate point to origin
Δ_{Δ}
Translate (-C)
\qquad

37

Rotate About Arb. Point
- Step I:Translate point to origin - Step 2: Rotate as desired - Step 3: Put back where it was

38

| Scale About Arb. Axis |
| :--- | :--- |
| Diagonal matrices scale about coordinate axes only: |
| Not axis-aligned |

39

| Scale About Arb. Axis |
| :--- | :--- |
| Step I:Translate axis to origin |
| Sunday, September 15,13 |

\qquad

| Scale About Arb. Axis |
| :--- | :--- |
| - Step I:Translate axis to origin |
| - Step 2: Rotate axis to align with one of the coordinate |
| axes |

41

Scale About Arb. Axis

- Step I:Translate axis to origin
- Step 2: Rotate axis to align with one of the coordinate axes
- Step 3: Scale as desired

\qquad
\qquad
\qquad

42

	Matrix Inverses
	- In general: \mathbf{A}^{-1} undoes effect of \mathbf{A} - Special cases: - Translation: negate t_{x} and t_{y} - Rotation: transpose - Scale: invert diagonal (axis-aligned scales) - Others: - Invert matrix - Invert SVD matrices

45

Point Vectors / Direction Vectors

\qquad

- Points in space have a 1 for the " w " coordinate
-What should we have for $\mathbf{a}-\mathbf{b}$?
- $w=0$
- Directions not the same as positions \qquad
- Difference of positions is a direction \qquad
- Position + direction is a position
- Direction + direction is a direction
\qquad
- Position + position is nonsense \qquad
\qquad
\qquad

47

Some Things Require Care

For example normals transform abnormally

$$
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0
$$

\qquad

Sunday, September 15, 13

Some Things Require Care

For example normals transform abnormally
\qquad

$$
\begin{gathered}
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M} \mathbf{t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=0
\end{gathered}
$$

\qquad

49

Some Things Require Care

$$
\begin{gathered}
\text { For example normals transform abnormally } \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M t}=0 \\
\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}}\right) \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}_{\mathbf{N}}^{\mathbf{T}}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{\mathbf{- 1}}
\end{gathered}
$$

\qquad

Some Things Require Care

For example normals transform abnormally

$$
\begin{gathered}
\mathbf{n}^{\mathbf{T}} \mathbf{t}=0 \quad \mathbf{t}_{\mathbf{M}}=\mathbf{M} \mathbf{t} \quad \text { find } \mathbf{N} \text { such that } \mathbf{n}_{\mathbf{N}}^{\mathbf{T}} \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}^{\mathbf{T}} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{I} \mathbf{t}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \mathbf{M} \mathbf{t}=0 \\
\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}}\right) \mathbf{t}_{\mathbf{M}}=0 \\
\mathbf{n}_{\mathbf{N}}^{\mathbf{T}}=\mathbf{n}^{\mathbf{T}} \mathbf{M}^{-\mathbf{1}} \\
\mathbf{n}_{\mathbf{N}}=\left(\mathbf{n}^{\mathbf{T}} \mathbf{M}^{\mathbf{1}}\right)^{\mathbf{T}} \\
\mathbf{N}=\left(\mathbf{M}^{-\mathbf{1}}\right)^{\mathbf{T}} \quad \text { See book for details }
\end{gathered}
$$

Suggested Reading

Fundamentals of Computer Graphics by Pete Shirley

- Chapter 6
- And re-read chapter 5 if your linear algebra is rusty!
\qquad

[^0]: Sunday, September 15, 13

